Reduced-order modeling for a cantilever beam subjected to harmonic forcing
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Abstract

Large-amplitude vibrations of a clamped-free beam are
considered. Reduced-order models (ROMs) are derived for
this problem, within the framework of non-linear normal
modes (NNMs), defined as invariant manifolds in phase
space. The method of real normal form theory, which al-
lows computation of all NNMs in a single operation, is
used [1, 2]. A specific development enables to handle the
non-linear inertia terms stemming from the large rotation
beam model. The dynamics onto the manifold is derived
up to order five. Non-linear mode shapes are exhibited, as
well as frequency-amplitude relationships. Finally, the case
of a harmonic base-excitation is considered.

GOVERNING EQUATIONS

In non-dimensional form, the equation governing planar
motion of a cantilever beam is given by [3]:
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where w(z,t) is the transverse displacement, « denotes
derivation with respect to time ¢ and w' derivation with re-
spect to space z. The dimensionless variables have been
choosen such that a displacement w equal to 1 in the model
refers to a real displacement equal to the length of the
beam. Associated boundary conditions are:

W+ w

Vt, w(0,t) =w'(0,t) =w"(1,t) = w"'(1,t) = 0. (2)

The aim of the present paper is to exhibit reduced-order
models of this equation by considering non-linear nor-
mal modes as an invariant-based span of the phase space.
Real normal form theory allows derivation of an asymp-
totic approach to the complete non-linear change of coor-
dinates, according to [1, 2, 4]. Hence, the calculations pre-
sented herein are a generalization of earlier results given in
[5, 6]. Itis also a generalization of the method presented in
[1, 2] which were designed for geometric polynomial non-
linearities in displacement, since specific developments en-
ables here to handle the non-linear inertia terms.

The first step of the computation is to set apart the spatial
dependence by projection of Eqg. (1) onto the complete set

of eigenfunctions defined by the linear part. The displace-
ment w is expanded as:
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where the linear eigenmodes ®,, are not recalled for the
sake of brevity (see e.g. [3, 5, 6]). After projection and
truncation to N linear modes (where IV is assumed to be
large), the problem writes, V p = 1...N:
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The coefficients of the non-linear terms are:
1
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They are numerically computed for N=15, which will be
the number of linear modes retained in the following.

NON-LINEAR NORMAL MODES

Inertial non-linearity

Real normal form theory, as defined in [1, 2], allows
computation of a complete change of coordinates, from the
phase space into itself. After this operation, the dynamics is
expressed in a curved invariant-based span, where each of
the IV subspace (say k) is the ™ invariant manifold. Within
this framework, truncation of EDOs governing the dynam-
ics can be properly realized. Retaining only one subspace
(k) recovers the equation of the manifold which defines the
k™ NNM, as well as the dynamics onto it.

In order to use developments presented earlier in [1, 2],
which were defined for geometric non-linearities only, Eq.
(4) has to be put under the usual form ¢ = F(¢) which
defines dynamical systems. This is realized by writing Eq.
(4) as:

(Iy + Ex(X)X = G(X), W
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Figure 1: Backbone curves for the first three modes. o: order-three dynamics, +: order-five dynamics.

where X = (X1, ..., Xn), Ix isthe N x N identity ma-
trix, 25 (X) isa N x N matrix whose element (¢, j) reads
(Einstein’s notation is used when necessary): f]w]X Xy,
and G(X) is a vector whose p™" element reads:

GP(X) = —h

X;X; Xy, — 2, X X; X (8)
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Assuming that X is small, Eq. (7) is formally written, up
to order five:

X = (Iy - En(X) + En(X).En(X))G(X), (9)

where the expanded developments are not reproduced for
the sake of brevity. Within this formulation, the computa-
tion of the NNMs, as proposed in [1, 2], is now possible.

Order-five dynamics

The computation of the NNMs through real normal form
theory is carried out by an order-three asymptotic develop-
ment [1, 2], formally written:

XI’ — Rp
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(Rp, S,) are the new normal coordinates, related to the p

NNM, and P and Q' are polynomials whose expres-
sion can be found in [1, 2]. Substituting Eq. (10) into (9)
allows expression of the dynamics with the new general-
ized normal displacement-velocity variables (R,, Sp). Ef-
ficient truncations have to be realized on this last system of
EDOs [2, 4].

As already mentioned in [4], for problems with odd non-
linearities only (as is the dynamics defined by Eq. (9)),
although the non-linear change of coordinates is expressed
up to order three, the dynamics onto a single manifold can
be found up to order five without invoking a great amount
of algebra. For the cantilever beam problem, the dynamics
of the p™ NNM up to order five reads:
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The coefficients introduced are equal to:
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Backbone curves for the first three modes are shown in
Figure 1. It should be noted that the order-three dynamics
(i.e. Eq. (11) truncated to order three) is exactly the same
as the dynamics obtained by retaining a single linear mode.
It is observed that the first mode displays a hardening be-
haviour, whereas the others display softening behaviour, a
classical result for the cantilever beam (see e.g. [7]). The
correction bringed by the NNM formulation on the back-
bone curves appears when considering the order-five dy-
namics. The curvature changes of the frequency-response
relationships have to be ascertained by a stability analysis
of the invariant manifolds by using Floquet theory for ex-
ample. This task is beyond the scope of the present paper.

Non-linear mode shapes

The main advantage of the method of real normal form is
that the complete change of coordinates defined by Eq. (10)
is computed in a single operation. Thus the effect of pos-
sible internal resonances are easily taken into account by
keeping the NNMs involved in a multi-dof invariant man-
ifold. The normal dynamics is readily given by keeping
the resonant terms [1, 2]. For the cantilever beam prob-
lem, order-three internal resonances are found in the eigen-
spectrum recalled in Table 1. However they don’t give
rise to invariant-breaking terms. The only internal reso-
nance susceptible to create an invariant-breaking term is
ws = 2ws + 2.49, which has not been considered here. Fi-
nally, single NNM motions are possible and are now briefly
studied.



—— : third NNM ~.~.— :third linear mode

displacement w
o

I I

o o
o Q
= o

-0.06 -

L
0 0.5 1

X
[\ A\ [A) JA)
0.03 | / I [ [
| X[ | LX)
| | i [ |
83 002“ 5“\‘ [ “))F?"‘\ | |
:‘; 0.01 | zoom
8 oy
RCRY Y SR B A B B | |
g I N
| | | |
\ | | \ \ | \
-0.03} |/ \/ \/ \/ |/ |/
U \ \/ \/ \/ \/

0 0.1 0.2 0.5

(;.3 0.4
t Fadim

Figure 2: Beam displacement during a half-period of free
oscillation initiated on the third NNM, and time histories
of the associated modal amplitudes

Table 1: Six first eigenfrequencies.
w1 w2 w3 Wy Ws w6
351 2203 61.69 1209 199.85 298.55

When considering a single NNM, the results reduce to
those presented in earlier studies [5, 6]. Figure 2 shows
how the beam vibrates through a half-period of motion
along the third NNM. This figure is obtained by simulating
Eq. (11) with m = 3, then Egs. (10) and (3) are applied to
recover the displacement w(z, t). Modal activities are thus
directly available and are also represented. One can notice
that the beam’s shape varies continuously with time, and
that the coupling with the fifth linear mode is proeminent.

HARMONIC BASE-EXCITATION

The aim of this section is to develop a complete model
for the cantilever beam subjected to a harmonic base-
excitation. Reduced-order models (ROMs) are considered
by using the precedently-defined NNMs. These ROMs are
computed in order to compare model predictions with a se-
ries of measurements realized by Pai and Lee [8], as well
as to give insight into some open questions raised by their
study.

The harmonic base-excitation wo(t) = @ cos(2t) give
rise to inhomogeneous boundary conditions. One defines
the relative displacement < (z, t) of the beam with respect
to the base as: w(z,t) = w(z,t) + we(t). The problem
is then solved for @(z, t), which can be expanded onto the
linear modes basis: w(z,t) = > Xp(t)®,(x). It reads,

Vp=1..N:

X, +wp X, + BE X XX,

+ i (XX X + XX X) = Qp(t), (15)
where Q,(t) = —1ig fol ®,(z)dz.

In order to use the results of the previous section, an in-
version procedure, similar to that realized through Eqgs (7)-
(9), has to be tackled. As a forcing term is now present in
the right-hand side of the dynamics, only third-order devel-
opments are now considered.

Damping has to be added for completing the model.
It has been choosen here to define a non-linear modal
damping as the rate of decay of the trajectories onto each
invariant manifold. Hence a viscous damping term, of the
form p,R,, is added to the model, after the non-linear
change of coordinates defined by Eqg. (10). In the simu-
lations, coefficients u,, have been taken equal to 0.2.

ROMs are now selected by keeping an arbitrary number
of non-linear modes for simulating the dynamics. A usual
procedure when dealing with forced oscillations is to keep
a single forced oscillator to describe the dynamics. Keep-
ing a single linear mode leads to erroneous results mainly
because the linear eigenspaces are not invariant in the non-
linear range. NNMs have been introduced in order to pre-
vent from those mistakes. Itallows, in particular, prediction
of the correct trend of non-linearity, while keeping a single
oscillator [2]. Unfortunately, keeping a single NNM in the
forced case —even if it overcomes the precedent mistakes—
is also a too severe truncation. This is because the forcing
term, which is naturally present on each non-linear oscil-
lator, introduces energy on each normal coordinate. These
contributions, although small (and often neglected under
the argument that the forcing frequency is far from natural
frequency), should not be cancelled.
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Figure 3: Beam motion for Q = 18 < w9, and @ = 0.023;
and modal activities X, for i=1...5
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The selected ROM is composed of two NNMs. We first
study the motion in the vicinity of the second eigenfre-
quency, see figure 3 for Q < ws, and figure 4 for Q > wo.
The simulations, for which the first two NNMs have been



retained (R; and Ry), display very good agreement with
the observations reported by Pai and Lee (see fig. 7 and
8 in [8] for the similar cases): the motion mainly consists
of the two first linear modal coordinates X; and X, (all
the others are negligible compared to them), and they are
out-of-phase before the resonance, and in-phase after the
resonance. When  ~ w», a slight phase difference be-
tween X; and X, is observed in our simulations and in the
experiments.
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Figure 4: Beam motion for Q = 24 > w-, and @) = 0.026;
and modal activities X;, fori=1...5

Figure 5 shows the simulated beam motion in the vicinity
of the third eigenfrequency: 2 = 57. The selected NNMs
for the ROM are the third and the fourth: R3 and R4. For
comparison, the beam vibratory mation obtained by retain-
ing the third and fourth linear modes (X3 and X,) is also
shown. Significative differences are observed. The mag-
nitude of the modal acitivity of X should also be noticed,
and can be related to the experimental observations of Pai
and Lee. All these results point out that a ROM based on
NNMs is able to predict the main features of the vibration.

CONCLUSION

This paper examines the NNM formulation for a can-
tilever beam as well as application of this methodology
for computing ROMs in the case of a harmonic base-
excitation. For free undamped vibration, the concept of
NNMs is now well established. It has been shown here
that the non-linear inertia terms can be handled within the
framework of real normal form theory. However, asymp-
totic developments act as a brake upon generalization of
this procedure, due to its limited applicability range [4].
The problem of external forcing has been briefly consid-
ered, in relation with experimental observation, and in
a manner which differs from recent results presented in
[9], where time-dependent invariant manifolds are com-
puted. It has been underlined that residual forcing terms,
which are always present except in the unrealistic case of
a forcing whose spatial dependence is defined by an eigen-
mode shape function, lead to residual contributions on non-
directly excited NNMs that cannot be neglected. This im-
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Figure 5: Top: beam motion for Q = 57 and @ = 0.008,
model with two NNMs (R3 and R4), and model with two
linear modes X3 and X,. Bottom: modal activities corre-
sponding to the motion computed with two NNMs.

plies in particular that the work realized to recover sub-
space’s invariance (expressed into Eq. (10)), loses its pow-
erful meaning, and that NNM mode shapes (such as repre-
sented on figure 2) are not observable in forced oscillations.
However, ROMs are always computable, and give nonethe-
less results that are in good agreement with experiments.
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