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Les contacts entre une corde vibrante et un obstacle rigide sont fréquemment rencontrés dans divers instruments de
musique (basse électrique, contrebasse, sitar, tampoura...), ce qui donne lieu à des sonorités riches et variées.
Dans la littérature, ce problème est l’objet d’études analytiques, numériques et, dans une moindre mesure,
expérimentales. Dans cette étude, on présente une nouvelle méthode numérique permettant de calculer en temps
les déplacements d’une corde, éventuellement raide et amortie, en présence d’un obstacle unilatéral de forme
quelconque. Le modèle est dit modal mixte car les opérateurs numériques sont issus d’une description modale du
système mais exprimés dans l’espace physique. La force de contact est régularisée et un schéma conservatif en
temps est mis en œuvre. Cette méthode implique un nombre de modes égal au nombre de points de discrétisation
spatiale, et permet de prendre en compte finement les fréquences propres et les amortissements réels d’une corde.
Des résultats numériques sont confrontés à des mesures expérimentales dans le cas d’un obstacle ponctuel. Celui-
ci est placé soit au milieu de la corde, soit très proche de l’une de ses extrémités, cette dernière configuration
correspondant à une approximation d’un chevalet de tampoura.

1 Introduction
On s’intéresse dans cet article aux contacts entre une

corde vibrante et un obstacle. Ces contacts sont essentiels
pour comprendre le son produit par certains instruments à
corde d’origine indienne (sitar, tampoura...), mais aussi pour
des instruments comme la contrebasse ou la basse électrique.

Les méthodes numériques permettant de modéliser le
contact corde / obstacle mises en oeuvre dans la littérature
sont variées. Les guides d’ondes sont exploités dans [1],
et couplés aux différences finies dans [2] pour une corde
idéale, [3] pour une corde dispersive amortie et un obstacle à
l’extrémité de la corde. Une approche modale est privilégiée
dans [4], où un obstacle semblable à celui présent sur une
tampoura est simulé. Des méthodes conservatives avec une
force de contact régularisée sont présentées dans [5] et [6],
la première étant basée sur les équations Hamiltoniennes du
système, la seconde employant les différences finies. Ces
schémas permettent de modéliser le contact entre une corde
dispersive amortie et un obstacle de forme quelconque.
Cependant, de par leur nature temporelle, ces approches
ne permettent pas de prendre en compte des pertes dont
la dépendance fréquentielle peut être ajustée pour chaque
mode.

Des études expérimentales ont également été menées.
Le sawari du Chikuzen biwa est en particulier l’objet de [7]
(obstacle arrondi). L’importance de la courbe du chevalet est
soulignée dans le cas du sitar, dans [8]. Dans ces deux cas,
l’étude porte sur des instruments complets. La corde isolée
est observée dans [9] avec un contact entre une corde et des
obstacles ponctuels, et dans [4], où le mécanisme présent
sur la tampoura est étudié, le chevalet courbe et son fil juari
étant assimilés à un chevalet double. Selon les auteurs, la
dispersion est indispensable à l’effet donné par le chevalet.

Avec une visée de synthèse sonore, l’étude présentée
ici se concentre sur la mise en œuvre d’une méthode
numérique robuste permettant une gestion raffinée des
phénomènes dissipatifs, et prenant en compte le contact à
travers une description régularisée. Ces travaux consistent
essentiellement à tirer partie des atouts de la méthode
proposée dans [6] (en particulier l’utilisation d’un schéma
numérique conservant l’énergie à l’aide d’une régularisation
de la force de contact), tout en l’étendant à la gestion
de lois d’amortissements pouvant être ajustés mode par
mode. De plus, on présente un protocole expérimental,
composé d’une corde isolée et d’obstacles de notre choix,

permettant d’observer le comportement réel de cette corde en
présence d’obstacles. Enfin, des comparaisons poussées sont
proposées entre les résultats numériques et expérimentaux
dans le cas d’un obstacle ponctuel, placé au centre de
la corde puis proche de l’une de ses extrémités. Cette
dernière configuration est proche de celle rencontrée sur une
tampoura [4].

2 Modèle numérique

2.1 Présentation du problème
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Figure 1 – Schéma du problème considéré

Le système étudié, représenté sur la figure 1, est une
corde raide de longueur L, de masse linéique µ, de tension T ,
dont l’amortissement dépend de la fréquence et en présence
d’un obstacle d’équation g(x) pour x ∈ [0, L], situé sous la
corde au repos. La corde est supposée raide, avec un module
d’Young E et un moment d’inertie I. Son mouvement, pour
de petits déplacements, est régi par l’équation suivante :

µutt − Tuxx + EIuxxxx + 2σ0µut = f , (1)

où u(x, t) représente le déplacement de la corde, et
σ0 ≥ 0 un paramètre de pertes, lesquelles ne dépendent pas
de la fréquence pour l’instant. uX désigne la dérivée partielle
de u par rapport à la variable X.

La force de contact est régularisée, et a pour expression
f (u) = K

[
g(x) − u(x, t)

]α
+, où [x]+ désigne la partie positive

de x [6]. Cette force dérive d’un potentiel ψ : f = −
dψ
du avec

ψ(u) = K
α+1

[
g(x) − u(x, t)

]α+1
+ .

Les conditions aux limites sont telles que :
u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0 ∀t ∈ R+.

L’énergie continue associée à l’équation (1) a pour



expression :

H =
µ

2

∫ L

0
(ut)2dx+

T
2

∫ L

0
(ux)2dx+

EI
2

∫ L

0
(uxx)2dx+

∫ L

0
ψdx.

(2)
Elle vérifie H ≥ 0 et satisfait l’égalité suivante :

dH

dt
= −Q, avec Q = 2σ0µ

∫ L

0
(ut)2 dx. (3)

Le problème étant posé, on s’attache maintenant à le
simuler numériquement.

2.2 Schéma numérique
Les différentes étapes pour la construction du modèle

numérique sont les suivantes :
1. On part d’un schéma exact proposé dans [10] pour un
oscillateur harmonique simple, dans le cas sans obstacle.
2. On applique ce schéma à chaque mode de la corde, et
l’on ajoute un terme pour la force de contact. A ce stade,
l’équation obtenue porte sur les coefficients modaux de u.
3. Le choix d’un nombre de modes égal au nombre de
points intérieurs de discrétisation spatiale permet de réécrire
simplement l’équation sur u. On exprime alors la force de
contact unilatérale selon le schéma conservatif proposé dans
[6].

Suivons ces étapes une à une. Fort de la connaissance
du schéma exact pour un oscillateur harmonique proposé
dans [10], on commence donc par exprimer l’expansion
modale à l’ordre N de u : u(x, t) =

∑N
p=1 qp(t)φp(x), où

φp(x) =

√
2
L sin

(
pπx
L

)
pour des conditions aux limites en

appui simple.
La corde est discrétisée spatialement à l’aide du maillage
suivant : xi = iL

N , i ∈ {0, ...,N}. On a u(x0, t) = 0 et
u(xN , t) = 0 ∀t ∈ R+, on ne s’intéresse donc par la suite
qu’aux valeurs de u sur le maillage pour i ∈ {1, 2, ...,N − 1}.

On note ui le déplacement de la corde au point xi. Si l’on
considère N − 1 modes, alors ∀i ∈ {1, 2, ...,N − 1}, on a :

ui(t) =

N−1∑
p=1

qp(t)φp(xi) =

N−1∑
p=1

qp(t)

√
2
L

sin
( pπi

N

)
.

Ceci s’écrit encore, sous forme matricielle : u = Sq, avec
S i, j = φ j(xi), ∀(i, j) ∈ {1, ...,N}2.

En injectant l’expansion modale d’ordre N − 1 de u dans
l’équation (1), on obtient :

µ(q̈ +Ω2q + 2Σq̇) = F, (4)

oùΩ et Σ sont des matrices diagonales, telles que Ωi,i = 2π fi
et Σi,i = σi ∀i ∈ {1, ...,N − 1}. Les fréquences propres
sont données par : fi = i f0

√
1 + Bi2, avec f0 la fréquence

fondamentale pour la corde souple et B = π2EI
T L2 . σi est le

paramètre d’amortissement relatif au ième mode, que l’on
peut à présent faire varier à loisir.

L’équation de la corde avec contact est maintenant
discrétisée spatialement, on s’intéresse désormais à la
discrétisation temporelle. On s’inspire pour cela du schéma
exact pour un oscillateur harmonique en l’absence de force

[10]. Le schéma sera donc exact si la force de contact est
nulle.

On pose qn
i la valeur de qi (coefficient correspondant au

mode i) au temps tn = n∆t, et on discrétise le schéma comme
suit :

µ
[
Č1δttqn + Č2qn + Č3δt.qn

]
= Fn, (5)

avec Č1, Č2 et Č3 diagonales telles que :

Č1ii =
1 + (1 − αi)

ω2
i ∆t2

2

1 + (1 − αi)
ω2

i ∆t2

2 + σ∗i ∆t

Č2ii =
ω2

i

1 + (1 − αi)
ω2

i ∆t2

2 + σ∗i ∆t

Č3ii =
2σ∗i

1 + (1 − αi)
ω2

i ∆t2

2 + σ∗i ∆t
.

Les opérateurs discrets sont tels que : δttqn =
qn+1−2qn+qn−1

∆t2

et δt.qn =
qn+1−qn−1

2∆t .
Les coefficients correspondants sont les suivants :

αi =
2

ω2
i ∆t2

−
A

1 + e − A

σ∗i =

 1
∆t

+
ω2

i ∆t
2
− α

ω2
i ∆t
2

 1 − e
1 + e

avec :

A = e−σi∆t
(
e
√
σ2

i −ω
2
i ∆t + e−

√
σ2

i −ω
2
i ∆t

)
et e = e−2σi∆t.

Ce choix de paramètres permet d’obtenir un schéma exact
en temps lorsque F = 0, et donc la meilleure approximation
possible des fréquences vibratoires en l’absence de pertes, cf
[10].
Il reste à ce stade à expliciter F. Les différents modes sont
couplés à travers ce terme de force de contact. Afin de
s’affranchir de la complexité que cela implique, on choisit de
revenir à une équation sur u, en utilisant la propriété suivante
de la matrice S : ST S = N

L IN, donc S−1 = L
N ST .

Ceci nous donne le schéma sur u suivant :

µ
[
Ď1δttun + Ď2un + Ď3δt.un

]
= fn, (6)

avec Ď1 = SČ1S−1, Ď2 = SČ2S−1 et Ď3 = SČ3S−1.

Notons δt−qn =
qn−qn−1

∆t et δt+qn =
qn+1−qn

∆t . On choisit

l’expression présentée dans [6] pour la force : fn =
δt−ψ

n+ 1
2

δt.un ,

avec ψn+ 1
2 = 1

2 (ψn+1 + ψn) et ψn = ψ(un), forme qui permet
d’avoir conservation de l’énergie (ou dissipation de l’énergie
en présence de pertes).

En effet, on peut montrer que l’on obtient l’égalité
d’énergie suivante :

δt−Hn+ 1
2 = −µ

〈
δt.un, Ď3δt.un

〉
, (7)

avec :

Hn+ 1
2 =

µ

2

〈
δt+un, Ď1δt+un

〉
+
µ

2

〈
un+1, Ď2un

〉
+

〈
ψn+ 1

2 , 1
〉
(8)



et en définissant le produit scalaire par :

〈u, v〉 = ∆x
∑

j∈{0,...,N}

u jv j.

Si Ď3 est définie positive, ce qui est le cas pour σ∗i > 0,
alors le schéma est strictement dissipatif. Dans ce cas, la
stabilité est garantie si l’énergie est toujours positive.

Ayant maintenant à disposition un schéma numérique
pour modéliser une corde raide et amortie en présence un
obstacle de forme quelconque, dans lequel on peut injecter
des valeurs mesurées de fréquences et amortissement, on
souhaite comparer des résultats numériques à des mesures.
Pour cela, on met en place un protocole expérimental.

3 Protocole expérimental

3.1 Montage
La corde étudiée est une corde de sol de guitare

électrique, de diamètre 0.43 mm, de masse linéique 1.17
g.m−1, de longueur L = 1002 mm et de tension valant
environ 180.5 N (soit une fréquence fondamentale d’environ
196 Hz).

On étudie la vibration de cette corde isolée sur le banc
de corde utilisé dans [11] (figure 2). Celle-ci est initialement
pincée en son milieu à l’aide d’un fil de cuivre de diamètre
0.05 mm, choisi petit pour avoir des vibrations de petite
amplitude. Le fil cassant toujours à la même tension,
nous obtenons une excitation répétable. Un capteur de
déplacement [12] donne le déplacement de la corde selon
(Oz) à 1 cm de l’extrémité x = L de la corde.

z

x
y

0 L

Figure 2 – Banc de corde

Ont traitera le cas de l’obstacle ponctuel en plaçant
une arête de pavé métallique sous la corde, présenté sur la
figure 3. Celui-ci est placé sur un élévateur micrométrique
permettant un positionnement précis.

Figure 3 – Obstacle ponctuel

3.2 Identification des caractéristiques
linéaires

A l’aide de la méthode ESPRIT [13] utilisée après un
traitement du signal similaire à celui décrit dans [14], on
obtient 36 fréquences propres et amortissements de la corde.
On utilise ensuite des valeurs théoriques pour les partiels
suivants, dont les paramètres sont ajustés en fonction des
mesures.

L’effet de la raideur est ainsi pris en compte à travers le
coefficient d’inharmonicité B = 1.78 × 10−5, on obtient alors
la figure 4a. L’écart entre la théorie et les mesures pour les
fréquences allant jusqu’à 7 kHz est inférieur à 1 savart.

Les valeurs d’amortissement théoriques sont quant à elles
déterminées d’après le modèle exposé dans [4]. Le facteur de
qualité Q est ainsi calculé selon :

Q−1 = Q−1
air + Q−1

ve + Q−1
te , (9)

où les indices ve et te se réfèrent aux pertes viscoélastiques
et thermoélastiques respectivement, et avec :

Q−1
air =

R
2πµ fn

, R = 2πηair + 2πd
√
πηairρair fn,

Q−1
ve =

4π2µEIδve

T 2 f 2
n ,

Q−1
te une constante,

où ηair et µair sont respectivement le coefficient de viscosité
dynamique et la densité de l’air. δve s’appelle l’angle de
pertes viscoélastiques et correspond à un retard de phase de
la déformation sur la contrainte [15].

Les paramètres δve et Q−1
te s’ajustent par rapport à des

données. δve étant indépendant de la fréquence dans la
gamme audible pour des cordes en métal [15], c’est ici une
constante. Afin d’ajuster au mieux les valeurs théoriques aux
mesures obtenues sur les 36 premiers modes (cf figure 4b),
on prendra ici δve = 0.006 et Q−1

te = 0.000138.

0 10 20 30 40
0

2000

4000

6000

8000

numero de partiel

fr
eq

ue
nc

es
 (

H
z) theorique

experimental

(a)

10
2

10
4

10
6

0

1000

2000

3000

4000

5000

frequences (Hz)

Q
 (

H
z)

theorique
experimental

(b)

Figure 4 – (a) Fréquences propres expérimentales et
théoriques (b) Facteur de qualité expérimental et théorique.

Les caractéristiques linéaires de la corde sont ainsi
déterminées et peuvent être utilisées dans le modèle
numérique précédemment décrit, en considérant les valeurs
mesurées pour les 36 premiers modes, et les résultats
théoriques pour les modes suivants. Ceci nous permet
finalement de confronter les résultats numériques et
expérimentaux. Dans la partie qui suit, nous effectuons cette
comparaison dans le cas d’un obstacle ponctuel.



4 Cas du contact ponctuel : résultats
et discussion

4.1 Obstacle centré
On considère ici l’obstacle ponctuel de la figure 3,

que l’on place sous la corde, en son milieu, et l’affleurant
lorsqu’elle est au repos. La corde est pincée en son milieu,
avec une vitesse initiale nulle. Les paramètres numériques
de raideur de la force sont K = 1013 et α = 1.3. La corde est
discrétisée en N = 1001 points intérieurs. La convergence
temporelle est difficile à obtenir pour les problèmes de
contact, faisant intervenir des temps très courts et des
raideurs extrêmement élevées. L’amortissement joue quant
à lui un rôle bénéfique puisqu’il contrôle la partie hautes
fréquences du spectre numérique. Une étude de convergence
sur le problème amorti nous a montré qu’une fréquence
d’échantillonnage Fe d’au moins 1 MHz était nécessaire.
Dans la suite de l’étude nous avons fixé Fe = 2 MHz. En
comparant le signal obtenu sur banc de corde et le signal
calculé avec le schéma numérique exposé dans la partie 2.2,
on obtient la figure 5. L’énergie présentée est celle du signal
numérique (équation (8)).
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Figure 5 – Comparaison des signaux obtenus
expérimentalement et numériquement, obstacle au milieu.

Les zones grisées représentent l’incertitude à 95 % du signal
expérimental.
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Figure 6 – Spectrogrammes, obstacle au milieu : (a) signal
expérimental (b) signal numérique.

On vérifie que les fréquences fondamentales du signal
numérique avec et sans obstacle, fa et fs respectivement,
vérifient le rapport fs

fa
= 195.7

261.3 ≈
3
4 prévu par la théorie [16].

On observe sur la figure 5 une très forte similitude entre
les signaux expérimentaux et numériques. Il existe cependant
un léger déphasage entre eux, ainsi qu’une amplitude plus
importante dans le cas numérique. Ces différences peuvent
être dues à une erreur d’estimation du facteur de qualité de
la corde, à l’incertitude expérimentale sur la hauteur et la
position de l’obstacle ou encore à des amortissements dus
à l’interaction corde / obstacle. Cela pourrait encore faire
suite à une condition initiale numérique ne correspondant pas
parfaitement à l’excitation expérimentale.

Les spectrogrammes, présentés sur les figures 6a et
6b, ont également des allures similaires. On remarque
notamment l’absence de réjection de modes, également
signalée entre autres dans [17], ainsi qu’un transfert
d’énergie entre modes.

4.2 Obstacle de type tampoura
La tampoura est un instrument à cordes pincées dont les

cordes se jouent à vide, et comportant un chevalet courbe sur
lequel est placé un fil juari. Cet ensemble est décrit comme
un chevalet double par les auteurs de [4] : tantôt la condition
limite au chevalet est donnée par le chevalet (lorsque la corde
est vers le bas), tantôt elle est donnée par le fil juari (lorsque
la corde est vers le haut). L’action de ce chevalet sur la corde
peut donc être principalement modélisé en considérant un
obstacle ponctuel placé près de l’extrémité correspondant au
chevalet [4].
On place donc l’obstacle ponctuel en x = 6 mm, et l’on
pince à nouveau la corde en son milieu. La figure 7 montre
une comparaison des signaux obtenus expérimentalement et
numériquement.
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Figure 7 – Comparaison des signaux obtenus
expérimentalement et numériquement, obstacle en x = 6

mm. Les zones grisées représentent l’incertitude à 95 % du
signal expérimental.

Les observations sont semblables au cas de l’obstacle
au milieu de la corde : les signaux temporels sont très
proches mais sont déphasés, et le signal numérique
présente à nouveau une amplitude plus grande que le signal
expérimental. Néanmoins, celle-ci paraı̂t moins surestimée
que dans le cas d’un obstacle au milieu de la corde.

Les spectrogrammes (figures 8a et 8b) présentent
également de grandes similarités, et l’on retrouve
l’apparition d’un formant (zone spectrale renforcée)



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

V
ite

ss
e

(m
/s

) ×10-4

-1

0

1

Temps (s)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

F
re

qu
en

ce
 (

kH
z)

0

0.5

1

1.5

2

2.5

3

3.5

Temps (s)

Fr
e
q

u
e
n
ce

 (
kH

z)
  

D
e
p

la
ce

m
e
n

t 
(m

)

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

V
ite

ss
e

(m
/s

) ×10-4

-1

0

1

Temps (s)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

F
re

qu
en

ce
 (

kH
z)

0

0.5

1

1.5

2

2.5

3

3.5

Temps (s)

Fr
e
q

u
e
n
ce

 (
kH

z)
  

D
e
p

la
ce

m
e
n

t 
(m

)

(b)

Figure 8 – Spectrogrammes, obstacle en x = 6 mm : (a)
signal expérimental (b) signal numérique.

descendant, dont l’évolution temporelle est semblable
à celle décrite dans [4] (étude expérimentale) et [18]
(étude numérique), également dans le cas d’interaction
entre une corde et un obstacle de type tampoura. Enfin,
on remarque une décroissance plus rapide de l’énergie
du signal numérique lorsque l’obstacle est proche d’une
extrémité. Cela peut être la conséquence d’un transfert plus
important d’énergie vers les autres fréquences à travers
l’interaction corde / obstacle. Celle-ci serait donc dissipée
plus rapidement, étant donnée la loi d’amortissement
intrinsèque de la corde.

5 Conclusion
Nous avons présenté un schéma numérique conservatif

permettant de prendre en compte finement des fréquences
et amortissements réels d’une corde, et de simuler son
mouvement en présence d’un obstacle ponctuel. Des
comparaisons ont été présentées entre des simulations
numériques et des signaux expérimentaux pour une corde
isolée, mettant en évidence une très forte similarité entre
eux. Afin d’étendre ces travaux, on peut notamment
envisager l’ajout de pertes au niveau du contact, ainsi que
la considération du mouvement selon (Oy). De plus, des
mesures pourraient être effectuées sur des instruments de
musique complets.
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vibrations, mécanique des vibrations. Cours en D.E.A.
A.T.I.A.M., 2000.

[16] H. Cabannes. Mouvements presque-périodiques
d’une corde vibrante en présence d’un obstacle fixe,
rectiligne ou ponctuel. Int. J. Non-linear Mechanics,
16(5/6) :449–458, 1981.

[17] C. Valette, C. Cuesta, C. Besnainou, and
M. Castellengo. The tampura bridge as a precursive
wave generator. Acustica, 74 :201–208, 1991.

[18] V. Chatziioannou and M. van Walstijn. Numerical
simulation of tanpura string vibrations. ISMA, pages
609–614, 2014. Le Mans, France.


