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Les contacts entre une corde vibrante et un obstacle rigide sont fréquemment rencontrés dans divers instruments de
musique (basse électrique, contrebasse, sitar, tampoura...), ce qui donne lieu a des sonorités riches et variées.
Dans la littérature, ce probleme est 1’objet d’études analytiques, numériques et, dans une moindre mesure,
expérimentales. Dans cette étude, on présente une nouvelle méthode numérique permettant de calculer en temps
les déplacements d’une corde, éventuellement raide et amortie, en présence d’un obstacle unilatéral de forme
quelconque. Le modele est dit modal mixte car les opérateurs numériques sont issus d’une description modale du
systeéme mais exprimés dans 1’espace physique. La force de contact est régularisée et un schéma conservatif en
temps est mis en ceuvre. Cette méthode implique un nombre de modes égal au nombre de points de discrétisation
spatiale, et permet de prendre en compte finement les fréquences propres et les amortissements réels d’une corde.
Des résultats numériques sont confrontés a des mesures expérimentales dans le cas d’un obstacle ponctuel. Celui-
ci est placé soit au milieu de la corde, soit treés proche de 'une de ses extrémités, cette derniere configuration

correspondant a une approximation d’un chevalet de tampoura.

1 Introduction

On s’intéresse dans cet article aux contacts entre une
corde vibrante et un obstacle. Ces contacts sont essentiels
pour comprendre le son produit par certains instruments a
corde d’origine indienne (sitar, tampoura...), mais aussi pour
des instruments comme la contrebasse ou la basse électrique.

Les méthodes numériques permettant de modéliser le
contact corde / obstacle mises en oeuvre dans la littérature
sont variées. Les guides d’ondes sont exploités dans [1],
et couplés aux différences finies dans [2] pour une corde
idéale, [3] pour une corde dispersive amortie et un obstacle a
I’extrémité de la corde. Une approche modale est privilégiée
dans [4], ol un obstacle semblable a celui présent sur une
tampoura est simulé. Des méthodes conservatives avec une
force de contact régularisée sont présentées dans [5] et [6],
la premiere étant basée sur les équations Hamiltoniennes du
systéme, la seconde employant les différences finies. Ces
schémas permettent de modéliser le contact entre une corde
dispersive amortie et un obstacle de forme quelconque.
Cependant, de par leur nature temporelle, ces approches
ne permettent pas de prendre en compte des pertes dont
la dépendance fréquentielle peut étre ajustée pour chaque
mode.

Des études expérimentales ont également été menées.
Le sawari du Chikuzen biwa est en particulier 1’objet de [7]
(obstacle arrondi). L’ importance de la courbe du chevalet est
soulignée dans le cas du sitar, dans [8]. Dans ces deux cas,
I’étude porte sur des instruments complets. La corde isolée
est observée dans [9] avec un contact entre une corde et des
obstacles ponctuels, et dans [4], ou le mécanisme présent
sur la tampoura est étudié, le chevalet courbe et son fil juari
étant assimilés a un chevalet double. Selon les auteurs, la
dispersion est indispensable a I’effet donné par le chevalet.

Avec une visée de synthese sonore, 1’étude présentée
ici se concentre sur la mise en ceuvre d’une méthode
numérique robuste permettant une gestion raffinée des
phénomenes dissipatifs, et prenant en compte le contact a
travers une description régularisée. Ces travaux consistent
essentiellement a tirer partie des atouts de la méthode
proposée dans [6] (en particulier I'utilisation d’un schéma
numérique conservant 1’énergie a 1’aide d’une régularisation
de la force de contact), tout en 1’étendant a la gestion
de lois d’amortissements pouvant €tre ajustés mode par
mode. De plus, on présente un protocole expérimental,
composé d’une corde isolée et d’obstacles de notre choix,

permettant d’observer le comportement réel de cette corde en
présence d’obstacles. Enfin, des comparaisons poussées sont
proposées entre les résultats numériques et expérimentaux
dans le cas d’un obstacle ponctuel, placé au centre de
la corde puis proche de l'une de ses extrémités. Cette
derniere configuration est proche de celle rencontrée sur une
tampoura [4].

2 Modele numérique

2.1 Présentation du probléme

FiGure 1 — Schéma du probleme considéré

Le systeme étudié, représenté sur la figure 1, est une
corde raide de longueur L, de masse linéique y, de tension 7',
dont I’amortissement dépend de la fréquence et en présence
d’un obstacle d’équation g(x) pour x € [0, L], situé sous la
corde au repos. La corde est supposée raide, avec un module
d’Young E et un moment d’inertie /. Son mouvement, pour
de petits déplacements, est régi par I’équation suivante :

My — Tty + Eluyrnx + 2000pu; = f, (D

ou u(x,t) représente le déplacement de la corde, et
oo = 0 un parametre de pertes, lesquelles ne dépendent pas
de la fréquence pour I’instant. uy désigne la dérivée partielle
de u par rapport a la variable X.

La force de contact est régularisée, et a pour expression
fw) = K[g(x) — u(x, D]}, ot [x], désigne la partie positive

de x [6]. Cette force dérive d’un potentiel i : f = —j—‘ﬁ avec

ww) = 2 [g(x0) — u(x, 0]+
Les conditions aux limites sont telles que :
u(0,1) = u(L, 1) = uy(0,1) = up(L,1) = 0Vt € R*.

L’énergie continue associée a 1’équation (1) a pour



expression :

L L L L
I = Ef (u,)zdx-i-zf (ux)zdx+gf (uxx)zdx+f Ydx.
2Jo 2 Jo 2 Jo 0 @

Elle vérifie 77 > 0 et satisfait 1’égalité suivante :

dt L
—— =—Q,avec Q = 20u f (u,)* dx. 3)
dt 0

Le probleme étant posé, on s’attache maintenant a le
simuler numériquement.

2.2 Schéma numérique

Les différentes étapes pour la construction du modele
numérique sont les suivantes :
1. On part d’un schéma exact proposé dans [10] pour un
oscillateur harmonique simple, dans le cas sans obstacle.
2. On applique ce schéma a chaque mode de la corde, et
I’on ajoute un terme pour la force de contact. A ce stade,
I’équation obtenue porte sur les coefficients modaux de u.
3. Le choix d’un nombre de modes égal au nombre de
points intérieurs de discrétisation spatiale permet de réécrire
simplement 1’équation sur u. On exprime alors la force de
contact unilatérale selon le schéma conservatif proposé dans

[6].

Suivons ces étapes une a une. Fort de la connaissance
du schéma exact pour un oscillateur harmonique proposé
dans [10], on commence donc par exprimer 1’expansion

3 . _ TN N
modale a 'ordre N de u : u(x,t) = p=1 q,(¢,(x), ou

op(x) = \/% sin(%‘) pour des conditions aux limites en
appui simple.

La corde est discrétisée spatialement a I’aide du maillage
suivant : x; = % i € {0,..,N}. On a u(xp,t) = 0 et
u(xy,t) = 0 ¥Vt € R*, on ne s’intéresse donc par la suite
qu’aux valeurs de u sur le maillage pour i € {1,2,...,N — 1}.

On note u; le déplacement de la corde au point x;. Si l’on
considere N — 1 modes, alors Vi € {1,2,....,N—1},ona:

N-1 N-1 .
2 . (pmi

ui(t) = ) qp(DPp(xi) = ) qp(1) [ 7 sin| —].
240005 = 050 7 sin (57

Ceci s’écrit encore, sous forme matricielle : u = Sq, avec
Si,j = ¢j(xi), v(l’ .]) € {13 ooy N}2

En injectant I’expansion modale d’ordre N — 1 de u dans
I’équation (1), on obtient :

u({ + Q°q+2xq) = F, 4)

ou Q et X sont des matrices diagonales, telles que Q;; = 2n f;
et X, = o; Vi € {l,..,N — 1}. Les fréquences propres
sont données par : f; = ify V1 + Bi%, avec fy la fréquence
fondamentale pour la corde souple et B = ’% o; est le
parametre d’amortissement relatif au ieme mode, que 1’on
peut a présent faire varier a loisir.

L’équation de la corde avec contact est maintenant
discrétisée spatialement, on s’intéresse désormais a la
discrétisation temporelle. On s’inspire pour cela du schéma

exact pour un oscillateur harmonique en 1’absence de force

[10]. Le schéma sera donc exact si la force de contact est
nulle.

On pose ¢! la valeur de g; (coeflicient correspondant au
mode 7) au temps " = nAt, et on discrétise le schéma comme
suit :

1| Ci6uq™ + Coq™ + C6.q"| = F, (5)
avec él, éz et é3 diagonales telles que :
WrA?
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Les opérateurs discrets sont tels que : §,q" = +——7——

Ar?
etd,. q" = —qm;zt’n?l.
Les coefficients correspondants sont les suivants :
2 A
YA Tre-A
. 1 w?At wl.zAt 1-e

”fz(Kz+ 2 Y2 )1+e

avec :

A= e—(f,vAt (6 \/o’?—w?At +e \/a’?—w?At) ete = e—ZD',At

Ce choix de parametres permet d’obtenir un schéma exact

en temps lorsque F = 0, et donc la meilleure approximation
possible des fréquences vibratoires en 1’absence de pertes, cf
[10].
Il reste a ce stade a expliciter F. Les différents modes sont
couplés a travers ce terme de force de contact. Afin de
s’affranchir de la complexité que cela implique, on choisit de
revenir a une équation sur u, en utilisant la propriété suivante
de la matrice S : S”S = Y1y, donc S' = £S7.

Ceci nous donne le schéma sur u suivant :

p[D1o,u" + Dyu® + Das,u”| = £, (6)

avec lv)l = S(VZIS‘I, ]v)z = S(ijS_1 et 133 = SC3S_1.

n+1

n_n-1 —q" . .
Notons 6,_q" = 45— et 6,,q" = L. On choisit

1
. £ £ Sy 2
I’expression présentée dans [6] pour la force : f* = = é‘bu" ,
1.

avec L.p‘”% = %(%DTHI + Y™ ety = y(u"), forme qui permet
d’avoir conservation de 1’énergie (ou dissipation de 1’énergie
en présence de pertes).

En effet, on peut montrer que I’on obtient I’égalité
d’énergie suivante :

6-H™: = —u(6.u", Dys,u"). (M)
avec

Hn+% = g <5t+un,]316t+un> + g <un+1’ ]32““> + <wn+%’ 1(>8)



et en définissant le produit scalaire par :

(u,v) = Ax Z Ujvij.

Si D3 est définie positive, ce qui est le cas pour ol >0,
alors le schéma est strictement dissipatif. Dans ce cas, la
stabilité est garantie si I’énergie est toujours positive.

Ayant maintenant a disposition un schéma numérique
pour modéliser une corde raide et amortie en présence un
obstacle de forme quelconque, dans lequel on peut injecter
des valeurs mesurées de fréquences et amortissement, on
souhaite comparer des résultats numériques a des mesures.
Pour cela, on met en place un protocole expérimental.

3 Protocole expérimental

3.1 Montage

La corde étudiée est une corde de sol de guitare
électrique, de diametre 0.43 mm, de masse linéique 1.17
gm™!, de longueur L = 1002 mm et de tension valant
environ 180.5 N (soit une fréquence fondamentale d’environ
196 Hz).

On étudie la vibration de cette corde isolée sur le banc
de corde utilisé dans [11] (figure 2). Celle-ci est initialement
pincée en son milieu a I’aide d’un fil de cuivre de diametre
0.05 mm, choisi petit pour avoir des vibrations de petite
amplitude. Le fil cassant toujours a la méme tension,
nous obtenons une excitation répétable. Un capteur de
déplacement [12] donne le déplacement de la corde selon
(02) a1 cm de ’extrémité x = L de la corde.

Ficure 2 — Banc de corde

Ont traitera le cas de l’obstacle ponctuel en plagant
une aréte de pavé métallique sous la corde, présenté sur la
figure 3. Celui-ci est placé sur un élévateur micrométrique
permettant un positionnement précis.

Ficure 3 — Obstacle ponctuel

3.2 Identification des
linéaires

caractéristiques

A T’aide de la méthode ESPRIT [13] utilisée aprés un
traitement du signal similaire a celui décrit dans [14], on
obtient 36 fréquences propres et amortissements de la corde.
On utilise ensuite des valeurs théoriques pour les partiels
suivants, dont les parametres sont ajustés en fonction des
mesures.

L’effet de la raideur est ainsi pris en compte a travers le
coefficient d’inharmonicité B = 1.78 x 10~>, on obtient alors
la figure 4a. L’écart entre la théorie et les mesures pour les
fréquences allant jusqu’a 7 kHz est inférieur a 1 savart.

Les valeurs d’amortissement théoriques sont quant a elles
déterminées d’apres le modele exposé dans [4]. Le facteur de
qualité Q est ainsi calculé selon :

0'=0,+0,+0., 9

ou les indices ve et fe se réferent aux pertes viscoélastiques
et thermoélastiques respectivement, et avec :

B R
1 _ R = 2mn,ir + 27d \N TN girPuir frs

air 27T/~1fn 4
_ A uEIS,,
Qve1 = Tfnz’

Q;.! une constante,

ol 174 €t Hg;r sont respectivement le coeflicient de viscosité
dynamique et la densité de I’air. 9,, s’appelle ’angle de
pertes viscoélastiques et correspond a un retard de phase de
la déformation sur la contrainte [15].

Les paramétres 6,, et Q;,! s’ajustent par rapport a des
données. d,, étant indépendant de la fréquence dans la
gamme audible pour des cordes en métal [15], c’est ici une
constante. Afin d’ajuster au mieux les valeurs théoriques aux
mesures obtenues sur les 36 premiers modes (cf figure 4b),
on prendra ici d,, = 0.006 et Q,‘e1 = 0.000138.
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Ficure 4 — (a) Fréquences propres expérimentales et
théoriques (b) Facteur de qualité expérimental et théorique.

Les caractéristiques linéaires de la corde sont ainsi
déterminées et peuvent étre utilisées dans le modele
numérique précédemment décrit, en considérant les valeurs
mesurées pour les 36 premiers modes, et les résultats
théoriques pour les modes suivants. Ceci nous permet
finalement de confronter les résultats numériques et
expérimentaux. Dans la partie qui suit, nous effectuons cette
comparaison dans le cas d’un obstacle ponctuel.



4 Cas du contact ponctuel : résultats
et discussion

4.1 Obstacle centré

On considere ici I'obstacle ponctuel de la figure 3,
que I’on place sous la corde, en son milieu, et 1’affleurant
lorsqu’elle est au repos. La corde est pincée en son milieu,
avec une vitesse initiale nulle. Les parametres numériques
de raideur de la force sont K = 10'3 et @ = 1.3. La corde est
discrétisée en N = 1001 points intérieurs. La convergence
temporelle est difficile a obtenir pour les problemes de
contact, faisant intervenir des temps trés courts et des
raideurs extrémement élevées. L’ amortissement joue quant
a lui un réle bénéfique puisqu’il contrdle la partie hautes
fréquences du spectre numérique. Une étude de convergence
sur le probleme amorti nous a montré qu’une fréquence
d’échantillonnage F, d’au moins 1 MHz était nécessaire.
Dans la suite de 1’étude nous avons fixé F, = 2 MHz. En
comparant le signal obtenu sur banc de corde et le signal
calculé avec le schéma numérique exposé dans la partie 2.2,
on obtient la figure 5. L’énergie présentée est celle du signal
numérique (équation (8)).
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Ficure 5 — Comparaison des signaux obtenus
expérimentalement et numériquement, obstacle au milieu.
Les zones grisées représentent I’incertitude a 95 % du signal
expérimental.
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FiGure 6 — Spectrogrammes, obstacle au milieu : (a) signal
expérimental (b) signal numérique.

On vérifie que les fréquences fondamentales du signal

numérique avec et sans obstacle, f, et f; respectivement,

vérifient le rapport % = % =~ % prévu par la théorie [16].

On observe sur la figure 5 une tres forte similitude entre
les signaux expérimentaux et numériques. Il existe cependant
un léger déphasage entre eux, ainsi qu'une amplitude plus
importante dans le cas numérique. Ces différences peuvent
étre dues a une erreur d’estimation du facteur de qualité de
la corde, a I’incertitude expérimentale sur la hauteur et la
position de 1’obstacle ou encore a des amortissements dus
a l'interaction corde / obstacle. Cela pourrait encore faire
suite a une condition initiale numérique ne correspondant pas
parfaitement a 1’excitation expérimentale.

Les spectrogrammes, présentés sur les figures 6a et
6b, ont également des allures similaires. On remarque
notamment ’absence de réjection de modes, également
signalée entre autres dans [17], ainsi qu’un transfert
d’énergie entre modes.

4.2 Obstacle de type tampoura

La tampoura est un instrument a cordes pincées dont les

cordes se jouent a vide, et comportant un chevalet courbe sur
lequel est placé un fil juari. Cet ensemble est décrit comme
un chevalet double par les auteurs de [4] : tantdt la condition
limite au chevalet est donnée par le chevalet (lorsque la corde
est vers le bas), tantot elle est donnée par le fil juari (lorsque
la corde est vers le haut). L’action de ce chevalet sur la corde
peut donc étre principalement modélisé en considérant un
obstacle ponctuel placé pres de I’extrémité correspondant au
chevalet [4].
On place donc I’obstacle ponctuel en x = 6 mm, et 'on
pince a nouveau la corde en son milieu. La figure 7 montre
une comparaison des signaux obtenus expérimentalement et
numériquement.
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Ficure 7 — Comparaison des signaux obtenus
expérimentalement et numériquement, obstacle en x = 6
mm. Les zones grisées représentent 1’incertitude a 95 % du
signal expérimental.

Les observations sont semblables au cas de I’obstacle
au milieu de la corde : les signaux temporels sont tres
proches mais sont déphasés, et le signal numérique
présente a nouveau une amplitude plus grande que le signal
expérimental. Néanmoins, celle-ci parait moins surestimée
que dans le cas d’un obstacle au milieu de la corde.

Les spectrogrammes (figures 8a et 8b) présentent
également de grandes similarités, et l’on retrouve
Iapparition d’un formant (zone spectrale renforcée)
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Ficure 8 — Spectrogrammes, obstacle en x = 6 mm : (a)
signal expérimental (b) signal numérique.

descendant, dont I’évolution temporelle est semblable
a celle décrite dans [4] (étude expérimentale) et [18]
(étude numérique), également dans le cas d’interaction
entre une corde et un obstacle de type tampoura. Enfin,
on remarque une décroissance plus rapide de 1’énergie
du signal numérique lorsque I’obstacle est proche d’une
extrémité. Cela peut tre la conséquence d’un transfert plus
important d’énergie vers les autres fréquences a travers
I’interaction corde / obstacle. Celle-ci serait donc dissipée
plus rapidement, étant donnée la loi d’amortissement
intrinseque de la corde.

5 Conclusion

Nous avons présenté un schéma numérique conservatif
permettant de prendre en compte finement des fréquences
et amortissements réels d’une corde, et de simuler son
mouvement en présence d’un obstacle ponctuel. Des
comparaisons ont été présentées entre des simulations
numériques et des signaux expérimentaux pour une corde
isolée, mettant en évidence une tres forte similarité entre
eux. Afin d’étendre ces travaux, on peut notamment
envisager I’ajout de pertes au niveau du contact, ainsi que
la considération du mouvement selon (Oy). De plus, des
mesures pourraient étre effectuées sur des instruments de
musique complets.
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