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ABSTRACT
A complete vibroacoustic model is presented in order to compute numerically the sound pressure generated

by a thin circular plate vibrating with large amplitude motions. The vibratory part relies on a modal approach

for the von Kármán thin plate equations. A special emphasis is put in this paper on the inclusion of a geo-

metrical imperfection describing the shape of the circular plate, hence extending previous results for perfect

plates to the generic case of imperfect plates and shallow shells. A conservative scheme is used in order to

integrate in time the modal equations of motion for the imperfect plate. The acoustic radiation is taken into

account by using a finite difference approach for the sound field. The vibroacoustic coupling gives rise to a

complete model which is applied for the purpose of sound synthesis of cymbals and gong-like instruments.

Simulation results are shown in order to investigate the influence of the geometric imperfection on the sound

produced. Plates with different profiles are compared and focus is set on the ability of the imperfection to

favour the appearance of the turbulent regime.

Keywords: Imperfect plates, Nonlinear vibrations, Sound synthesis I-INCE Classification of Subjects Num-

ber(s): 23.1, 41.5

1. INTRODUCTION

Thin plates vibrating with amplitudes comparable to their thickness display a geometric nonlinearity, which

is responsible of numerous features such as jump phenomena, hysteretic behaviour or chaotic vibrations. In

the field of musical acoustics, the strongly nonlinear regime is responsible for the bright shimmering sound

which is typical of gongs and cymbals. In recent years, it has been shown that this regime is turbulent,

with the presence of an energy cascade from the large to the small wavelengths [1–4]. One consequence of

this strongly nonlinear regime is the difficulty for simulating such dynamics, and thus to sound synthesize

percussion instruments such as gongs and cymbals.

Thanks to the progresses in computational methods and in particular to the use of conservative schemes,

robust and efficient methods have appeared recently for the sound synthesis of cymbals and gongs [5–8].

This paper is based on the results presented in [8] and proposes two major improvements. First, the case of

imperfect plates is tackled. This step is crucial in order to bring the numerical method closer to real cases,

and to encompass shallow spherical shells. Second, the acoustic coupling is taken into account, so that a

complete vibroacoustic model is finally developped. The numerical model is here used with the purpose

of sound synthesis but its peculiar features makes it a perfect candidate for all vibroacoustical simulations

of nonlinear imperfect plates. In this contribution, the effect of the imperfections on the vibratory part is

analyzed, and an example is shown of the results obtained with the complete vibroacoustic model.

2. THEORY AND FORMULATION

In this section, the non-linear equations of motion for perfect and imperfect plates are given. Next, the modal

approach used to discretize the problem is described and the temporal conservative scheme for imperfect

1email: aragones@ensta.fr
2email: cyril.touze@ensta-paristech.fr
3email: s.bilbao@ed.ac.uk
4email: v1mducce@exseed.ed.ac.uk

1



plates is presented. Finally, the acoustic radiation of the imperfect plates is summarized.

2.1 General equations

Non-linear vibrations of thin plates can be described using the dynamic analogue of the so-called von Kármán

equations, see e.g. [8–10] and references therein. For an isotropic plate of volume density ρ, Young modulus

E and Poisson ratio ν and after adding the external input force p and the viscous damping c terms, these

equations read

ρhẅ +DΔΔw = L(w,F ) + p(r, θ, t)− cẇ, (1a)

ΔΔF = −Eh

2
L(w,w). (1b)

In these equations, w is the transverse displacement at point (r, θ) and ẇ and ẅ correspond respectively

to its first and second order time derivatives. D = Eh3/12(1 − ν2) stands for the flexural rigidity, Δ for

the Laplacian operator and F for the Airy stress function. Finally, L is known as the von Kármán operator

which in polar coordinates writes

L(w,F ) = w,rr

(
F,r

r
+

F,θθ

r2

)
+ F,rr

(w,r

r
+

w,θθ

r2

)
− 2

(w,rθ

r
− w,θ

r2

)(
F,rθ

r
− F,θ

r2

)
(2)

with (·),αβ denoting partial derivatives with respect to α and β. Note that the von Kármán operator is

responsible for the coupling between transverse and in-plane motions which is the source of the geometric

nonlinearity that appears for large amplitude vibrations, i.e. as soon as w is of the order of the thickness h.

The validity of these equations is founded on the following assumptions [10, 11]. First, the plate must

be thin, i.e. h � a, with h and a being respectively the thickness and the radius of the plate. Second,

the Kirchhoff-Love hypotheses are fulfilled and therefore, the transverse shear can be neglected. Third, the

expression of the strain tensor is limited to the second order terms. Finally, in-plane and rotatory inertia are

neglected, so that an Airy stress function can be used.

2.2 The case of imperfect plates

In order to extend the use of (1) to imperfect plates, the transverse displacement w is redefined as a combina-

tion of two terms,

w(r, θ, t) = w0(r, θ) + w̃(r, θ, t). (3)

The first one w0 represents the static displacement, i.e. the profile of the imperfection at rest, and the second

one w̃ corresponds to the dynamic displacement with respect to w0. This expression is introduced in (1)

leading to [10, 12, 13]

ρh ¨̃w +DΔΔw̃ = L(w̃, F ) + L(w0, F ) + p(r, θ, t)− c ˙̃w, (4a)

ΔΔF = −Eh

2
[L(w̃, w̃) + 2L(w̃, w0)] . (4b)

By analysing these equations, the effect of the imperfection in the response of the plate can be appraised.

On one hand, (4b) shows that F is composed by a quadratic term L(w̃, w̃), already present in the perfect

plate case, and a linear term L(w̃, w0) which directly depends on the imperfection. This term points out

that the imperfection originates a linear coupling between transverse motion and membrane stretching. On

the other hand, (4a) contains a cubic and a quadratic term, being the latter function of the imperfection and

revealing that the transverse displacement is also dependent on the profile modifications. The appearance

of the quadratic nonlinearity is therefore directly connected to the imperfection and the loss of symmetry of

the restoring force with respect to the mid-plane. It has for major consequences that second-order internal

resonance relationships can be activated. Secondly odd harmonics can also appear in the spectrum of the

response. These facts have been used previously in order to show that the imperfction favours the transition

to chaotic vibration, when a plate is driven harmonically with a force of increasing amplitude [14, 15].
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2.2.1 Dimensionless form of the equations

Providing that the quantities involved in the problem are of different orders of magnitude, the variables are

often redefined in a dimensionless form:

w̃ = h ¯̃w, w0 = hw̄0, r = ar̄, (5)

F̃ = Eh3 ¯̃F, t =

√
ρha4

D
t̄, p =

h4E

a4
p̄, c =

Eh3

2a2

√
ρh

D
c̄. (6)

where the bars (̄ ) denote dimensionless variables.

Replacing the new definitions in (4) and omitting the overbars to simplify the notation, the equations of

motion of the imperfect plate can be rewritten as

¨̃w +ΔΔw̃ = ε
[
L(w̃, F ) + L(w0, F ) + p(r, θ, t)− 2c ˙̃w

]
, (7a)

ΔΔF = −1

2
[L(w̃, w̃) + 2L(w̃, w0)] (7b)

with ε = 12(1− ν2).

2.3 Modal approach

The discretization of (7) is performed using a modal approach, where w̃ and F are expanded in series in

terms of the eigenmodes of the linear system in (1). The modal expansions read

w̃(t, r, θ) =

NΦ∑
p=1

Φp(r, θ)

‖Φp‖ qp(t) (8a)

F (t, r, θ) =

NΨ∑
p=1

Ψp(r, θ)

‖Ψp‖ ηp(t) (8b)

The basis functions {Φi}i∈N and {Ψi}i∈N correspond respectively to the transverse and in-plane mode

shapes of the perfect plate, obtained from the eigenproblems

ΔΔΦi − ω2
iΦi =0, (9a)

ΔΔΨi − ζ4i Ψi =0. (9b)

The boundary conditions are set so that the external loads vanish at the edge of the plate (case of a free

edge) [9, 12]. In dimensional form,

F and w are bounded at r = 0, (10a)

F,r +
1

a
F,θθ = 0, F,rθ +

1

a
F,θ = 0, at r = 0 (10b)

w,rr +
ν

a
w,r +

ν

a2
w,θθ = 0, at r = a, (10c)

w,rrr +
1

a
w,rr − 1

a2
w,r +

2− ν

a2
w,rθθ − 3− ν

a3
w,θθ = 0, at r = a (10d)

The mode shapes are normalized so that∫∫
S

Φ2
pdS = 1,

∫∫
S

Ψ2
pdS = 1. (11)

with S standing for the plate surface. One main advantage of the circular case relies in the fact that solutions

to (9) are analytic (combination of Bessel functions). Analytical expressions are completely given in [8, 9],

for the eigenfrequencies ω2
i and ζ4i , as well as for the mode shapes {Φi}i∈N and {Ψi}i∈N. This has for

consequence that all the linear parameters can be easily computed with the desired accuracy, for a reasonable
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computational cost. This is not the case for all other cases, e.g. rectangular plate with free edges, where one

has to resort to a numerical solution for the linear problem.

The eigenmodes of the circular plate are denoted by the number of nodal diameters k and the number of

nodal circles n, i.e. (k, n). Thus, modes with k = 0 are axisymmetric.

Finally, the imperfection profile w0 is projected onto the transverse vibration modes,

w0(r, θ) =

N0∑
p=1

Φp(r, θ)

‖Φp‖ ap + zg (12)

where the projection coefficients ap and the center of mass’ offset zg are obtained thanks to the orthogonality

property of the eigenmodes,

ap =

∫∫
S

w0ΦpdS, (13)

zg =

∫∫
S
w0

πa2
. (14)

Next, (7a) and (7b) are multiplied respectively by Φs and Ψs and integrated over the plate surface S,

leading to the following temporal system of Ordinary Differential Equations (ODEs),

q̈s + ω2
sqs + 2cq̇s = ε

[
Nφ∑
k=1

Nφ∑
l=1

Es
kl(qk + ak)ηl + ps(t)

]
(15a)

ηl = − 1

ζ4l

NΦ∑
m,n

H l
mn (qmqn + 2qman) . (15b)

The previous equations introduce the notation for the non-linear coupling coefficients

Es
kl =

∫
S

ΦsL (Ψk,Ψl) dS, (16a)

H l
mn =

∫
S

ΨlL (Φm,Φn) , (16b)

which quantify the coupling between the transverse modes and the in-plane modes. In some cases, depending

on the boundary conditions, Es
kl = H l

ks [8, 10]. This is the case of the present problem and thus, this

symmetry condition will be assumed in the reminder of the paper.

A closed form for the transverse modes displacements can be written if (16b) is included in (16a),

q̈s + ω2
sqs + 2cq̇s = −ε

[
Nφ∑

k,m,n=1

Nφ∑
l=1

Es
klH

l
mn

2ζ4l
(qk + ak)(qmqn + 2qman) + ps(t)

]
(17)

and motivates the introduction of the cubic coefficient [8, 12]

Γs
kmn =

Nφ∑
l=1

Es
klH

l
mn

2ζ4l
. (18)

2.4 Eigenfrequencies of the imperfect plate

The projection of the imperfect plate onto the perfect plate eigenmodes permits the obtention of the eigenfre-

quencies of the former in a straightforward manner [12]. Let A = {εαs
m + ω2

sδsm} denote the linear part of

(17) in matrix form with

αs
m =

NΦ∑
m

NΦ∑
n

2Γs
kmnakan, (19)

and δsm the usual Kronecker delta symbol.
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The diagonalization of A by means of

{Ωsδsk}s,k∈[1,NΦ] = P−1AP (20)

provides the eigenfrequencies of the imperfect plate in Ωs and the mode shapes in P.

Note that the variation of the imperfect plate’s eigenfrequencies with respect to the perfect plate not only

depends on the size of the imperfection, but also on the coupling coefficients that involve the projected modes.

2.5 Conservative finite difference scheme

In this section, an energy-conserving scheme for imperfect plates introduced in [5] and adapted for the perfect

plate case in [8] is adapted to imperfect plates. The method introduces a set of operators which act on a state

vector q(n) at time step n. First, backward et− and forward et+ shift operators

et−q(n) = q(n− 1), et+q(n) = q(n+ 1). (21)

Backward δt−, centered δt· and forward δt+ approximations to first order time derivatives,

δt− ≡ 1

k
(1− et−), δt· ≡ 1

2k
(et+ − et−), δt+ ≡ 1

k
(et+ − 1), (22)

where k = 1/fs is the time step corresponding to the sampling frequency fs. They can be combined to

obtain an approximation to the second order derivative δtt,

δtt ≡ δt+δt− =
1

k2
(et+ − 2 + et−). (23)

Finally, the backward μt−, centered μt· and forward μt+ averaging operators are also introduced as

μt− ≡ 1

2
(1 + et−), μt· ≡ 1

2k
(et+ + et−), μt+ ≡ 1

k
(et+ + 1). (24)

Making use of the previous operators, the temporal conservative scheme for imperfect plates is built as

follows,

δttqs(n) + ω2
sqs(n) + 2cq̇s = ε

[
Nφ∑
k=1

Nφ∑
l=1

H l
ks(qk(n) + ak)μt·ηl(n) + ps(n)

]
(25a)

μt−ηl(n) = − 1

ζ4l

NΦ∑
i,j

H l
ij (qi(n)et−qj(n) + 2ajμt−qi(n)) . (25b)

The proof that this scheme is energy-conserving can be found in [8]. Note that the scheme is condition-

nally stable with the following stability condition to be fulfilled : fs ≥ πfNΦ
, where fNΦ

refers to the largest

eigenfrequency retained in the truncation for transverse motions [8].

2.6 Acoustic sound synthesis

For the sake of completeness, a method to predict the acoustic radiation of the plate is here implemented. A

finite difference approach is used to approximate in time and space the sound field around the plate [16]. The

plate is placed inside a grided box full of air, the coupling between the plate and the fluid is established and

the acoustic wave equation is approximated at every point of the grid. Let us summarize the procedure step

by step.

The acoustic 3D wave equation reads

ψ̈ = c20Δψ = c20 [ψ,xx + ψ,yy + ψ,xx] (26)

where ψ is the velocity potential, c20 is the air wavespeed and Δ =
(

d2

dx2 + d2

dy2 + d2

dz2

)
is the 3D Laplacian

operator in Cartesian coordinates. The velocity potential is related to pressure p and particle velocity v by

p = ρψ̇, (27a)

v = −∇ψ. (27b)
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where ∇ is the 3D gradient.

Next, the velocity potential is discretized throughout the grid such that

ψn
l,m,p

∼= ψ(lh,mh, ph, nhs), for l,m, p ∈ [1, N ]
3
, (28)

where ψn
l,m,p stands for the velocity potential at timestep n and discrete point l,m, p, with hs correspond-

ing to the grid spacing, k = 1/fs to the time step and N to the number of points at every dimension of the

grid. The sampling frequency fs is set to match the one used in the modal plate model. The grid spacing is

chosen so that the stability condition,

λ =
c20k

2

h2
s

≤ 1√
3
, (29)

is satisfied [17, 18]. The second order time derivative of the velocity potential is approximated at every point

of the grid using

ψ̈ ∼= 1

k2

[
ψn+1

l,m,p − 2ψn
l,m,p + ψn−1

l,m,p

]
, (30)

and the second order spatial derivatives,

ψxx
∼= 1

h2
s

[
ψn

l+1,m,p − 2ψn
l,m,p − ψn

l−1,m,p

]
, (31a)

ψyy
∼= 1

h2
s

[
ψn

l,m+1,p − 2ψn
l,m,p − ψn

l,m−1,p

]
, (31b)

ψzz
∼= 1

h2
s

[
ψn

l,m,p+1 − 2ψn
l,m,p − ψn

l,m,p−1

]
. (31c)

The boundary conditions correspond to the first-order Engquist-Majda absorbing boundary conditions devel-

oped in [19].

Replacing (31) and (30) in (26), the velocity potential is obtained as

ψn+1
l,m,p =

2

1 + bλ/2
ψn

l,m,p−
1− bλ/2

1 + bλ/2
ψn−1

l,m,p+
λ2

1 + bλ/2

⎡
⎣ ∑
{(li,mi,pi)}∈Nn

ψn
li,mi,pi

− (6− b)ψn
l,m,p

⎤
⎦ (32)

where Nn is the set of neighbours in the box of point (l,m, p) and b = |Nn| is the number of neighbours of

the mentioned point.

Figure 1. 3D grid for audio synthesis.

The plate is then placed in the center of the box, between p− and p+, and discretized to match the 3D grid

as shown in Figure 1. As a first approximation, the imperfection of the plate H is assumed to be smaller than

the grid space hs, i.e. H < hs.

The coupling between the plate and the air is done by using the plate velocity as the excitation of the

air inside the box. Assuming that the velocity of the plate at every point of the grid can be approximated
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using only the normal component, the velocity potential at the points immediately over and below the plate

is computed as

ψn+1
l,m,p+ = 2ψn

l,m,p+ − ψn−1
l,m,p+ + λ2

⎡
⎣ ∑

{(li,mi,pi)}∈N+
n

ψn
li,mi,pi

− 5ψn
l,m,p+

⎤
⎦+

c20k
2

h2
s

vl,m (33a)

ψn+1
l,m,p− = 2ψn

l,m,p− − ψn−1
l,m,p− + λ2

⎡
⎣ ∑
{(li,mi,pi)}∈N−

n

ψn
li,mi,pi

− 5ψn
l,m,p∗−

⎤
⎦− c20k

2

h2
s

vl,m (33b)

where N+
n = Nn − (l,m, p−), N−

n = Nn − (l,m, p+) and vl,m is the transverse velocity of the plate at

point (l,m).

Finally, the acoustic pressure at every point of the grid is obtained from

pnl,m,p =
ρ0
k

[
ψn

l,m,p − ψn−1
l,m,p

]
. (34)

3. SIMULATION RESULTS

The aim of this section is to compare the response of the plate depending on the imperfection profile and the

position of the excitation. The plate used for the numerical tests consists of a 84" gong-like circular plate

of radius a = 0.4318 m, thickness h = 1 × 10−3 m and made of an isotropic homogeneous material with

mass density ρ = 7860 kg/m3, Poisson ratio ν = 0.38 and Young modulus E = 200 GPa. The damping

coefficient is mode dependent and follows a power law, i.e. cs = 0.008ω0.6
s , following [8, 20].

The excitation is selected to represent the strike of a mallet on a point of the gong. The simplest approxi-

mation consists of a pointwise excitation at point x0 = (θ, r) given by

p(x− x0) = δ(x− x0)g(t) (35)

where g(t) is a raised cosine time signal,

g(t) =

⎧⎨
⎩

pm

2

[
1 + cos

(
π(t−t0)

Twid

)]
, if |t− t0| ≤ Twid

0, if |t− t0| > Twid,
(36)

with pm standing for the force amplitude and Twid for half the interaction time of the pulse.

The modal truncation in (25) is set to 1000 transverse modes, with f1000 = 5086.7 Hz. The number of

in-plane modes is truncated to 60, a sufficient number to ensure convergence of the nonlinear coefficients [8].

The sampling rate is set to fs = 31.96 kHz so that the the stability of the scheme together with sufficient

accuracy for the upper modes is fulfilled. The simulation time is set to Ts = 5 s to cover the strike and the

dissipation of the main part of the energy.

For the results presented in this section, the emphasis is put on the vibratory part. Hence, the analyzed

output is selected as the displacement at an arbitrary point of the plate at xo = (0.5192, 0.8962a).

3.1 Comparison in terms of the excitation point

The first case investigated considers a perfect plate with varying excitation point, in order to understand and

calibrate the influence of the striking point on the plate vibration. The first excitation point, x0,1 = (0, 0)

is set at the center of the plate in order to excite uniquely the axisymmetric modes of the plate. The second

excitation point x0,2 = (π/127, 0.1a) is located close to the center to excite mostly axisymmetric modes but

including some other modes as well. Finally, the third excitation x0,3 = (π/4, 0.92a) point is set close to the

edge of the plate and selected to excite the maximum possible number of modes. The amplitude of the force

is pm = 300N and half the interaction time Twid = 5 ms.

The spectrograms of the displacement at the output point are shown in Figure 3.1. The first figure on the

left, Fig. 2(a), corresponds to the excitation at center. It can be observed that the vibration is almost linear

as all eigenfrequencies appear almost distinctively in the spectrum. In the second case, Fig. 2(b), couplings

begins to appear, and are finally fully activated for the strike at the edge, Fig. 2(c), where a clear build-up of
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(a) x0,1 = (0, 0) (b) x0,2 = (π/127, 0.1a) (c) x0,3 = (π/4, 0.92a)

Figure 2: Spectrograms corresponding to the displacement at the selected output point xo, for different position

of the input force, respectively at center, x0,1 = (0, 0); near center, x0,2 = (π/127, 0.1a); and close to the edge,

x0,3 = (π/4, 0.92a). Perfect plate with pm = 300 N and Twid = 5 ms.

energy is present in the spectrogram, indicating that the turbulent behaviour is at hand with energy cascading

in the first milliseconds from the frequency content of the excitation up to 6000 Hz.

These simulations indicate that when the excitation is perfectly at the center point, such that only ax-

isymmetric modes are excited by the external force, no energy is transferred to the whole spectrum. This is

the consequence of the fact that, due to symmetry reasons, coupling coefficients between axisymmetric and

asymmetric modes are vanishing for the perfect plate [9]. This theoretical case disappears as soon as the

striking point is not perfectly at center. It should also disappear with an imperfection in the plate, which is

unavoidable in real plates. However, in the case of an axisymmetric imperfection, this rule on the coupling

coefficients should continue since the axial symmetry is not broken. This will be investigated in the next

subsections.

3.2 Comparison in terms of the imperfection profile

In this section, the effect of the imperfection on the vibratory response of nonlinear plates is investigated.

Two different imperfection profiles are selected for that purpose.

3.2.1 Imperfections proportional to mode (0, 1)

The first imperfection is shown in Figures 3(a) and 3(c). Its profile is proportional to the first axisymmetric

mode shape of the perfect plate, i.e. mode (0, 1), so that the approximated w0 is expressed by a single

coefficient a(0,1). In this case, H = 2a(0,1). The values of this coefficient, a(0,1) = {0.36h, 1.73h, 2.02h},

are set so that the eigenfrequencies of the plates satisfy the relationships gathered in Table 1. The presence of

such relationships favours the couplings between modes via internal resonance, and thus the energy transfer

between the modes of the structure in order to attain more easily the turbulent behaviour.

(a) (b)

(c) (d)

Figure 3: 3D views and profile sections of the test imperfections. (a),(c) Imperfection propor-
tional to mode (0,1); (b),(d) Asymmetric imperfection.
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Table 1. Relationships between the eigenfrequencies

a(0,1) = 0.36h a(0,1) = 1.73h a(0,1) = 2.02h
2ω(2,0) � ω(0,1) 2ω(3,0) � ω(0,1) ω(4,0) � ω(5,0)

2ω(0,1) � ω(1,1) 2ω(0,1) � ω(0,2) ω(3,0) + ω(1,1) � ω(5,0)

ω(3,0) + ω(5,0) � ω(6,0) ω(2,0) + ω(0,1) � ω(5,0)

(a) a(0,1) = 0.36h (b) a(0,1) = 1.73h (c) a(0,1) = 2.02h

Figure 4. Spectrograms corresponding to plates with profile proportional to mode (0, 1).

The spectrograms of the displacement at the output point xo when the plate is excited with a pulse of pm =

200 N are plotted in Figure 3.2.1. The excitation point is selected close to the edge, x0,3 = (π/4, 0.92a).

The three cases show that the turbulent behaviour is activated, and is most pronounced in the third case for

a(0,1) = 2.02h. Other simulations, not shown in the paper for the sake of brevity, where the excitation

force is at center point, show undoubtedly a linear behaviour. This underlines that if the imperfection is

axisymmetric, as in the perfect case, the coupling between axisymmetric and asymmetric modes can not be

activated. On the other hand, the simulations with the strike close to the edge show the importance of internal

resonances in order to attain easily the turbulent regime.

3.2.2 Asymmetric imperfection

The second imperfection profile, plotted in Figures 3(b) and 3(d) is fully asymmetric in order to observe

the effect of breaking the axial symmetry of the system. This shape is obtained as the combination of three

asymmetric modes, i.e. w0 ≈ −0.1029Φ(9,3) + 0.1471Φ(11,5) − 0.1324Φ(12,5), with H = 1h.

(a) x0,1 = (0, 0), pm = 500 N (b) x0,2 = (π/4, 0.92), pm = 200 N

Figure 5: Spectrograms of output point xo, for the asymmetric imperfection shown in Fig. 3(b) and 3(d). The

striking point is respectively at center, x0,1 = (0, 0) (left), and close to the edge, x0,2 = (π/4, 0.92) (right).

The response of the plate is evaluated when hit at the center and close to the edge. In this case, results

are shown for two different input values, Figure 5(a) shows the spectrogram of the displacement at the output

point for an input of pm = 500 N at x0,1 = (0, 0) whereas Figure 5(b) plots the same magnitude when

the plate is hit at x0,2 = (π/4, 0.92) with pm = 200 N. The main observation is that with the asymmetric

imperfection, couplings are now activated when the plate is stricken at center. This shows that, by breaking
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Figure 6: Acoustic pressure obtained with the sound synthesis method. (a) At ZY-plane section
at X = 0.75 m and t = 1.1 ms. (b) At point (0.75, 0.94, 1.03). (c) At ZY-plane section at
X = 0.75 m and t = 2.2 ms.

the axial symmetry, coupling coefficients are now non vanishing, so that energy can be easily exchanged

between the modes to attain the turbulent behaviour. Nevertheless, a larger amount of input energy is needed

in the case of the strike at center, in order to obtain the same maximal cut-off frequency at the end of the

cascading regime. Indeed, in Figs. 5(a) and 5(b), the cascade excites a high frequency content up to 4000 Hz,

but for two different values of the input force pm.

3.3 Application of sound synthesis

In order to illustrate the full vibroacoustic model, the sound synthesis method is applied to a plate with a

spherical profile of H = h. Since the radius of the plate is a = 0.4318 m, the side of the box is set

L = 1.5 m. The sampling frequency is fs = 100 kHz and λ is set so that hs = 0.0038. The modal

series is truncated to 1000 modes to ensure a response up to 15 kHz. The plate is excited with a raised

cosine of pm = 300 N and Twid = 1 ms at point x0 = (π/4, 0.92) and time T0 = 0.1 ms. This means

that the input signal reaches its maximum at t = 1.1 ms. Figure 6(a) shows the acoustic pressure at plane

X = 0.75 m at time of maximum input energy, i.e. t = 1.1 ms. Next, the pressure is plotted for a single

point (xb, yb, zb) = (0.75, 0.94, 1.03) for the first 10 ms. One can observe that the maximum peak of this

signal is located at t = 2.2 ms, reflecting the delay between the plate response and the acoustic pressure at

that point is Δt = 1.1 ms. Figure 6(c) shows the acoustic pressure at the same plane than Fig 6(b) but at

time t = 2.2 ms, corresponding to the time of maximum pressure at (xb, yb, zb). The advantage of the sound

synthesis method is that it provides the global response of the plate together with the radiated sound pressure,

contrary to the dynamic method where only pointwise results are obtained.

4. CONCLUSIONS

In this paper, a complete vibroacoustic modelling for the sound synthesis of imperfect nonlinear circular

plates, has been derived. The main features of the numerical methods used are: (i) a modal approach for

the nonlinear vibratory part, in order to be able to implement any frequency-dependent damping law, (ii)

a conservative time-marching scheme and (iii) a finite difference radiation method in order to compute the

coupled vibroacoustic problem.

Several cases of study have been implemented to discuss the influence of the excitation point and the

imperfection profile on the strongly nonlinear, turbulent response of plates, showing in particular the impor-

tance of internal resonance relationships, together with asymmetric imperfection in order to break the axial

symmetry and activate the largest number of couplings between modes.

These results are very important with regard to sound synthesis of cymbals and gong-like instruments. It

gives a unified framework for solving the complete vibroacoustic problem, with the simulation of realistic

sounds, in particular thanks to the modal approach. Strongly nonlinear regime with turbulent behaviour are

also easily synthesized, with a reasonable computational burden. Finally, taking into account the imperfection

is very important in order to simulate real cases.
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