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A von Kármán simply supported plate is considered. A general strategy is developed for the solution of the nonlin-
ear equations: the solution is expanded onto the linear normal modes for the displacement and stress function. To
this extent, a general numerical method is devised to deal with cases where no analytical solutions are available.
Description of the nonlinear coupling coefficients can then be done in terms of the linear eigenfunctions. The role
of these coefficients is shown to be involved in explaining the complicated dynamics of the plate in nonlinear free
oscillations. The current model is validated through comparison with other results in the literature and thanks to a
finite difference scheme.

1 Introduction
Acoustical interest of rectangular thin plate vibrations re-

sides in their ability to simulate the sound of more realis-
tic percussive instruments such as gongs and cymbals [14].
However, the relatively simpler geometry of rectangular plates
allows for a more systematic study than other structures like
cymbals or shells. Plates present shimmering and crashing
sounds when the amplitude of vibration becomes compara-
ble to the plate thickness, thus violating the basic assumption
of linear vibrations. Large vibration patterns can be origi-
nated thanks to external forcing, like an impulsive load (for
example, by striking the plate with a mallet), or a sinusoidal
forcing of reasonable amplitude.

Nonlinear plate vibrations can be described by the von
Kármán equations. These take into account a quadratic cor-
rection to the longitudinal strain, as compared to the classical
linear plate equation by Kirchhoff [12]. The type of nonlin-
earity introduced is thus purely geometrical.

Due to the vast spectrum of applications, rectangular plates
have been the subject of extensive research, with special at-
tention to analytical or numerical models. Amongst others,
one could cite the pioneering works of Chu and Herrmann
[5] and Yamaki [15], and more recent developments by Seo
et al. [11] and Anlas and Elbeyli [2]. Finite elements meth-
ods were employed by Ribeiro and Petyt [9, 10], Ribeiro
[8], Boumediene et al. [4]. However, very few experiments
have been performed. Amabili [1] used a parameter continu-
ation software to perform bifurcation analysis, and compared
the results with experimental data, finding satisfactory agree-
ment. In the realm of sound synthesis, Bilbao [3] developed
a finite difference scheme to integrate the equations directly
in the time domain.

Here, another numerical test is developed. It makes use
of a pure modal approach, where the solution is expanded
onto the linear normal modes for the displacement and stress
functions. The modal expansion is truncated at an order N so
that the original system is viewed as an N-degree-of-freedom
system where the modes interact nonlinearly. The original
partial differential equations can be integrated directly in the
space coordinates, thus leaving a set of ordinary nonlinear
differential equations.

Although the cited works take into account various as-
pects of nonlinear plate theory and boundary conditions, none
of them is really focused on quantifying and explaining the
nature of the coupling coefficients. This model then is specif-
ically designed to give a natural description of the coupling
coefficients, that, in theory, can be calculated systematically
for any set of boundary conditions.

The case under study is that of a simply supported plate.
In the literature, different sets of boundary conditions corre-
spond to the simply supported case. The distinction is origi-
nated upon the role that the Airy stress function plays in the
in-plane motion. Here, the case of a simply supported plate

with in-plane movable edges is chosen. The conditions for
the transverse motion are then simply given by imposing zero
displacement and flexural moments at the boundary. For the
in-plane motion with movable edges, one imposes the Airy
stress function to vanish along with its first normal derivative,
as shown in [12]. As a result, the stress function equation
takes the same form as that of a clamped Kirchhoff plate.

The solution for the displacement is given analytically by
a double Fourier sine series, which also provides the linear
eigenfrequencies. The Airy function case instead does not
have an analytical solution. One has then to resort to some
numerical strategy. Here the choice was to follow the work
by W.L. Li [7], who makes use of the Rayleigh-Ritz method
by constructing the solution upon a modified double Fourier
cosine series.

Once that the linear normal modes are found, one can
manipulate the von Kármán system to derive a set of coupled
ordinary differential equations with cubic nonlinearities.

The current model is validated by direct comparison with
a finite difference scheme by Bilbao [3], as well as previ-
ous results found in the literature. Free vibrations are in-
spected thanks to a continuation software, allowing the com-
putation of the nonlinear amplitude-frequency relations, ex-
hibiting complicated dynamics with numerous internal reso-
nances and coupled branches.

2 Model Description

2.1 Modal Equations
The current section presents the von Kármán equations as

well as the modal approach adopted for the resolution. It is
assumed that the linear modes are known regardless the par-
ticular form of the boundary conditions. A discussion spe-
cific to the simply supported case is found in the next sec-
tions.

A rectangular plate of dimensions Lx, Ly is considered.
The plate is homogeneous, isotropic, of density ρ, Young’s
modulus E and Poisson’s ratio ν. Its flexural rigidity is D =
Eh3/12(1−ν2). The von Kármán system then reads

D∆∆w+ρhẅ+ cẇ = L(w,F)+δ(x−x0) f cos(Ωt) (1a)

∆∆F =−Eh
2

L(w,w) (1b)

where ∆ is the Laplacian operator, w = w(x,y, t) is the trans-
verse displacement and F = F(x,y, t) is Airy stress function.
The equations present a viscous damping term cẇ and a sinu-
soidal forcing term δ(x−x0) f cos(Ωt) applied at the point x0
on the plate. The damping will take the form of modal vis-
cous damping once that the equations are discretised along
the normal modes. The bilinear operator L(·, ·) is known as
von Kármán operator [12] and, in cartesian coordinates, it



has the form of

L(α,β) = α,xxβ,yy +α,yyβ,xx−2α,xyβ,xy (2)

where ,s denotes differentiation with respect to the variable
s. This operator, although itself bilinear, is the source of the
nonlinear terms in the equations. All the quantities are taken
in their natural units, so that Eq. (1a) and Eq. (1b) have the
dimensions, respectively, of kg m−1 s−2 and kg m−2 s−2.

The displacement w and the stress function F are then
discretised along the linear modes. This is to say that they
satisfy the following linear partial differential equations:

w = Sw

∞

∑
k=1

Φk(x,y)
‖Φk‖

qk(t);

∆∆Φk(x,y) =
ρh
D

ω
2
kΦk(x,y) (3a)

F = SF

∞

∑
k=1

Ψk(x,y)
‖Ψk‖

ηk(t);

∆∆Ψk(x,y) = ζ
4
kΨk(x,y) (3b)

along with the appropriate boundary conditions. A discus-
sion on boundary conditions is found in [12]. The next sub-
section will deal with the case of a simply supported plate
with movable edges. For conciseness, the dependence of
the functions on the variables x,y, t will not be displayed any
more, unless necessary.

The numbers Sw and SF are constants of normalisation
that can be chosen arbitrarily. They are introduced so that
the norms of the functions

Φ̄k = Sw
Φk

‖Φk‖
; Ψ̄k = SF

Ψk

‖Ψk‖
(4)

are, respectively, Sw and SF . The linear modes so defined
orthogonal with respect to integration over the problem’s do-
main. Orthogonality is intended in the sense of L2 real func-
tion spaces, where the inner product between two members
α and β of the space is

〈α,β〉=
∫

S
αβ dS (5)

This allows for manipulation of Eq. (1) when used in combi-
nation with Eq. (3). Starting with Eq. (1b), one obtains

ηk =−
Eh
2ζ4

k

S2
w

SF
∑
p,q

qpqq

∫
S ΨkL(Φp,Φq)dS
‖Ψk‖‖Φp‖‖Φq‖

(6)

Integration was performed over the domain S, and the orthog-
onality relation was used. Eq. (1a) needs a longer manipula-
tion, thus all the steps are presented. First, the displacement
and stress functions are written using the modal expansions:

ρhSw ∑
k

ω2
kΦk

‖Φk‖
qk +ρhSw ∑

k

Φk

‖Φk‖
q̈k + cSw ∑

k

Φk

‖Φk‖
q̇k =

∑
p,n

SF Sw

‖Ψn‖‖Φp‖
qpηnL(Φp,Ψn)+δ(x−x0) f cos(Ωt) (7)

Then the expression for ηn in Eq. (6) is substituted into Eq.
(7) to obtain, on the right hand side

. . .=−EhS3
w

2 ∑
n,p,q,r

1
ζ4

n

L(Φp,Ψn)

‖Ψp‖‖Φn‖

∫
S ΨnL(Φq,Φr)dS
‖Φq‖‖Φr‖‖Ψn‖

qpqqqr

+δ(x−x0) f cos(Ωt) (8)

Now both sides are multiplied by Φs, and integrals over the
domain are taken:

‖Φs‖ρhSw(ω
2
s qs + q̈s +2χsωsq̇s) =

−EhS3
w

2

n

∑
p,q,r

1
ζ4

n
Hn

q,rE
s
p,n‖Φs‖qpqqqr +Φs(x0) f cos(Ωt) (9)

Note that, after integration, each one of the modes presents
its own modal damping, as defined in [1]. The tensors H and
E are:

Hn
q,r =

∫
S ΨnL(Φq,Φr)dS
‖Ψn‖‖Φq‖‖Φr‖

;Es
p,n =

∫
S ΦsL(Φp,Ψn)dS
‖Φp‖‖Φs‖‖Ψn‖

(10)

Both members can be divided by ‖Φs‖ρhSw to obtain

q̈s +2χsωsq̇s +ω
2
s qs =

−ES2
w

2ρ

n

∑
p,q,r

Hn
q,rE

s
p,n

ζ4
n

qpqqqr +
Φs(x0)

‖Φs‖ρhSw
f cos(Ωt) (11)

A fourth order tensor Γs
p,q,r defined as

Γ
s
p,q,r = ∑

n

E
2ρ

Hn
q,rE

s
p,n

ζ4
n

(12)

is introduced in Eq. (11) and represents the tensor of the
cubic coupling coefficients.

2.2 Boundary Conditions
The case under study is that of a simply supported plate

with movable edges. This translates into the following bound-
ary conditions for Eq. (3a) and Eq. (3b):

Φk =
∂2Φk

∂n2 = 0 ∀x ∈ ∂S (13a)

Ψk =
∂Ψk

∂n
= 0 ∀x ∈ ∂S (13b)

where ∂S is the boundary of the rectangular area S and n in-
dicates the direction normal to the boundary. Eq. (3a) along
with conditions (13a) is easily solved by considering

Φk(x,y) = XΦ
m (x)Y Φ

n (y) = sin
(

mπx
Lx

)
sin
(

nπy
Ly

)
(14)

and thus

ω
2
k =

D
ρh

[(
mπ

Lx

)2

+

(
nπ

Ly

)2
]2

(15)

Note that the index k is indeed a double index m,n. The modes
are sorted in ascending order according to the value of their
eigenfrequencies.

The equation for Ψk does not present an analytical so-
lution. The next section is then devoted to explaining the
numerical model employed to solve the equation.

3 A solution for the clamped plate
Eq. (3b) along with (13b) represents the Kirchhoff linear

clamped plate equation. Li [7] presents a method to solve
equations of the type (3b) with general boundary conditions.
Here however emphasis is put on the clamped case. The



equation of motion and boundary conditions are obtained
thanks to a variational approach of the form

δ

∫ t1

t0
(T −V ) dt = 0 (16)

for two arbitrary instants t0, t1. T and V are the kinetic and
potential energies of the system, a form of which reads

2V =
∫

S

(
F2
,xx +F2

,yy +2νF,xxF,yy +2(1−ν)F2
,xy
)

dxdy (17)

2T =
∫

S
F2
,t dxdy (18)

For a linear, unforced problem the function F is

F =
M

∑
k=1

e j ζ2
k t

Ψk (19)

The number M is, in theory, infinite; however, for the sake
of numerics one needs to perform truncation up to a finite
size. Influence of truncation will be briefly shown in the next
section.
The function Ψk is chosen in the following manner:

Ψk = ∑
m,n

dm,n
k XΨ

m (x)Y Ψ
n (y) (20)

where

XΨ
m (x) = cos

(
mπx
Lx

)
+

4

∑
s=0

asxs (21a)

Y Ψ
n (y) = cos

(
nπy
Ly

)
+

4

∑
s=0

bsys (21b)

This represents a double modified Fourier cosine series. The
polynomials ∑

4
s=0 asxs and ∑

4
s=0 bsys are chosen so that the

boundary conditions (13b) are automatically satisfied. In this
sense, a possible solution is

∑
4
s=0 asxs =

15(1+(−1)m)
L4

x
x4− 4(8+7(−1)m)

L3
x

x3 + 6(3+2(−1)m)
L2

x
x2−1 (22)

and similarly for ∑
4
s=0 bsys. When Eq. (19) and (20) are

inserted into (16), one obtains a scalar equation from which
an eigenvalue problem can be extracted, i.e.

dT (K−ζ
4M)d = 0; dT = [d00,d01, ...,dmn, ...] (23)

The explicit forms of the matrices K and M are rather in-
volved and are not presented here.

Li [7] shows that the modified double cosine series ap-
proach remains valid in the case of general elastic support at
the edges. This includes all the ”classical” boundary condi-
tions plus mixed and intermediate cases. Generally, one im-
poses the boundary conditions to be satisfied automatically
by the displacement function, and then defines an eigenvalue
problem of type (23) which produces the eigenfrequencies
and the expansion coefficients d.

4 Numerical results
Table 1 presents the clamped plate eigenfrequencies ζk

obtained by retaining M = 64 modes along with those by

Table 1: Comparison of clamped plate frequencies

ζ2
k ·LxLy

k Model Leissa FD

1 40.51 40.51 40.05

2 62.56 62.58 61.93

3 99.19 98.25 98.00

10 208.0 207.9 205.50

20 359.6 - 355.32

Leissa [6], as well those produced by Bilbao’s finite dif-
ferences scheme [3]. The plate parameters are: Lx = 0.6
m, Ly = 0.4 m, ρ = 7860 kg/m3, ν = 0.3, h = 0.001 m,
E = 2 ·1011 Pa. The FD scheme presents 242×161 discreti-
sation points along the x and y directions, i.e. dxdy/(LxLy) =
2.6 ·10−5. Table 2 gives three nondimensional Gamma coef-
ficients Γk

k,k,k for a plate with the same physical parameters
but where Lx = Ly = 0.3 m. For this calculation, a total num-
ber M = 81 of Airy stress function modes was retained in
definition (12). The finite difference scheme was run with
121×121 grid points, or dxdy/(LxLy) = 6.8 · 10−5. Table 3

Table 2: Comparison of Gamma coefficients

Γk
k,k,k ·

ρ

E (LxLy)
3

k Model FD

1 25.30 25.89

25 2.071 ·104 2.141 ·104

50 7.748 ·104 7.540 ·104

presents the convergence of the same Γ’s for different values
of M, calculated using the modal approach. Finally, Table 4
presents the calculation for Γ1

1,1,1 using the finite difference
scheme, and it highlights the effects of truncation for differ-
ent grid meshes. Numbers in brackets are the average cal-
culation times for a basic MATLAB implementation. Note
that, for the modal approach, most of the calculation time
goes into the calculation of the norms ‖Ψk‖. Once this is
done, the actual calculation of each one of the Γ’s is much
faster (about 0.1 s for M = 81). Thus, the calculation time
per coefficient decreases with the total number of coefficients
calculated.

The tables show good agreement between the data for the
eigenfrequencies, with discrepancies of the order of a few
percents. In addition, the calculation of the Γ’s shows the
consistency of the modal approach. Convergence up to a de-
sired value can be obtained for each of the Γ’s by retaining a
sufficient amount of stress function modes.



Table 3: Convergence of Γ’s, modal approach

Γk
k,k,k ·

ρ

E (LxLy)
3

M k = 1 k = 25 k = 50

81 25.30 (∼13s) 2.071 ·104 7.748·104

144 25.30 2.078 ·104 7.761·104

256 25.30 2.100 ·104 7.922·104

324 25.30 (∼750s) 2.100 ·104 7.922·104

Table 4: Convergence of Γ1
1,1,1, Finite Differences

Γ1
1,1,1 ·

ρ

E (LxLy)
3

M Grid pts =
38×38

Grid pts =
86×86

Grid pts =
121×121

49 27.103 (∼1s) 26.117 28.882

64 27.107 26.121 (∼6s) 25.886

81 27.108 26.121 25.886 (∼22s)

5 Free vibrations of nonlinear plate
In this section, the periodic orbits (also called the Non-

linear Normal Modes, NNMs) of the simply supported plate
are computed, for the first two modes. The plate has got
the following physical parameters: Lx = 0.4 m, Lx = 0.6,
ρ = 7860 kg/m3, ν = 0.3, h = 0.001 m, E = 2 · 1011 Pa. It
is the same plate as the one used in [13] for the transition to
turbulence. A numerical continuation technique (predictor-
corrector with pseudo-arclength continuation, implemented
in the software AUTO) is used for this task. The resulting
amplitude-frequency plots display the nonlinear dependance
of the frequency on the vibration amplitude, and give insight
into the nonlinear dynamics of the plates, showing precisely
the coupling and energy transfers that can be expected.

Figure 1 shows the result for the first mode, for a model
including the first six modes, and up to a vibration amplitude
of 6 times the thickness. The main branch, denoted B1 shows
a hardening behaviour, as it is usual for plates: the frequency
increases with the amplitudes. For that branch, a strong non-
resonant coupling with the fourth is observed, which is due to
the presence of a term q3

1 in the fourth modal equation for q4.
Hence q4 is present with a noticeable amplitude, that is why
on fig. 1, the main branch B1 is denoted with B1

1 and B4
1, the

upper index indicating the modal coordinate involved. For
ω=1.13ω1, an instability occurs for the main branch B1

1, and
a resonant coupling with the second mode appears, result-
ing in the coupled B12 branch. A 1:3 internal resonance is
here at hand, and branch B2

12 starts from zero up to an impor-
tant amplitude. Following further the main branch B1, new
coupled solutions are found around ω '1.5ω1, and for a vi-
bration amplitude of four times the thickness. The resonant
coupling involves mainly the sixth mode, thus the branch is
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1.48 1.5 1.52
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m
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) i
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2
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Figure 1: Frequency-amplitude dependence of the first
mode of the selected plate. Maximum of modal coordinates
qi is plotted as a function of the normalised frequency ω/ω1.
q1 in blue, q2 in red, q3 in magenta, q4 in green, q5 in orange

and q6 in brown. Unstable states are displayed in a dotted
line.

denoted as B16. The resonant coordinate is the sixth one,
B6

16, and interestingly enough the sixth mode is coupled via
a non-resonant term of the form q3

6 with the third coordinate,
which also appears in the plot, see B3

16. Finally a coupled
branch with mode 5, B15, is also observed, but mainly leads
to unstable solutions.

The amplitude-frequency relationship for the second mode
is shown in Fig. 2. The retained model contains now the
first eight modes. Once again, the main branch B2 shows a
hardening behaviour, and a non-resonant coupling with the
seventh mode is noticeable (B7

2). Internal resonances lead to
tongues of coupled states, with the fifth mode, B25, and then
with the eighth mode, B28. The eighth mode is also non-
resonantly coupled with modes 1 and 4, which appears in the
branch B28.

6 Conclusion
A general modal approach for nonlinear plates was pre-

sented. The particular case of a simply supported plate was
taken under consideration. To this extent, a numerical so-
lution strategy to compute the stress function was used, and
the results were compared with similar results in the litera-
ture and with a finite difference scheme, finding consistent
agreement. A few nonlinear coupling coefficients were cal-
culated and their convergence was shown. Finally, bifurca-
tion diagrams for free vibrations of the first two modes were
plotted, and the internal resonances were explained in light of
the specific weight of each of the coupling coefficients in the
equations of motion. This model can serve as a basis for var-
ious applications: sound synthesis of gong-like instruments,
nonlinear dynamics of a multi-degree-of-freedom system, in-
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Figure 2: Frequency-amplitude dependence of the second
mode of the selected plate. Maximum of modal coordinates
qi is plotted as a function of the normalised frequency ω/ω1.

q2 in red, q1 in blue, q4 in dark green, q5 in orange, q7 in
violet and q8 in light green. Unstable states are displayed in

a dotted line.

vestigation of wave turbulence in elastic materials [13].
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