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CHAPITRE 1

Ondes électromagnétiques dans les plasmas (in french)

Table des matiéres

1.1 Généralités surlesplasmas . . . . . . ... ... L 1
1.2 Ondesdanslesplasmas . . ... ... ... .. ... ... .. . . ... ...... 2
1.3 Plasma dans un champ magnétique fort . . . . . . ... ... ... L. 5
1.4 Plasma avec une densité variable . . . . . . ... ... Lo o oL 6
1.5 Plandelathése . ... ... . . .. . ... 10

1.1 Généralités sur les plasmas

Le plasma est le quatriéme état de la matiére et la forme de matiére la plus abondante dans
I'univers. Il se caractérise par la présence de particules chargées et d’ions, dans des proportions
et des densités qui peuvent varier dans I'espace et le temps. La température d’'un plasma est
généralement beaucoup plus élevée que la température ambiante, dépassant souvent plusieurs
milliers de kelvins. Sur Terre, les plasmas sont principalement utilisés a des fins industrielles.
L’un des exemples d’utilisation industrielle les plus fréquemment cités est la production d’énergie
électrique par le biais de réacteurs nucléaires a fusion. En fait, cela motive de nombreux aspects de
la recherche universitaire et industrielle. Différents types de réacteurs sont étudiés de nos jours,
comme les Tokamaks [37], ou les Stellarators [39, Chapitre 17].

Il y a plusieurs défis a relever pour obtenir une réaction de fusion stable a I'intérieur de ces
réacteurs. Nous en présentons ici trois. Le premier est le confinement du plasma a l'intérieur
du réacteur. Pour ce faire, plusieurs dispositifs sont disposés de maniére a imposer des champs
magnétiques poloidaux et toroidaux et un courant électrique toroidal [36], cf. figure 1.1. Il en
résulte qu'un champ magnétique hélicoidal est imposé au plasma. Néanmoins, ce type d’installation
n’est pas suffisant pour empécher les instabilités du plasma. Afin de contenir correctement le
plasma, des mesures de la densité du plasma doivent étre effectuées. En raison de la température
extréme, une mesure intrusive est impossible. Ensuite, le deuxiéme défi consiste a controéler la
densité du plasma par des méthodes de réflectométrie [43, 40, 30, 33]. Pour ce faire, des ondes
électromagnétiques de différentes fréquences sont envoyées, puis on mesure la réponse. Enfin, le

dernier défi est le chauffage du plasma, et se fait en envoyant des ondes électromagnétiques a des
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fréquences et des directions spécifiques en fonction des caractéristiques du plasma. Théoriquement,
il existe actuellement trois types d’ondes utilisables [39, Chapitre 12] : les ondes de fréquence
cyclotron ionique, les ondes de fréquence cyclotron électronique et les ondes «lower-hybrid ».

central solenoid

poloidal magnetic field
outer poloidal field coils

helical magnetic field toroidal field coil

plasma electrical current toroidal magnetic field

FIG. 1.1 : Représentation des champs magnétiques et du courant a 'intérieur d’un tokamak!.

Pour relever ces défis, une description fine des champs électromagnétiques a l'intérieur du
plasma est nécessaire. Ce rapport décrit le travail effectué sur deux configurations tres simplifiées.
Les deux configurations considérent un plasma magnétisé avec en arriére-plan un champ ma-
gnétique constant By = Bye,. La premiere configuration donne lieu a une équation aux dérivées
partielles hyperbolique non standard dans I’espace. La seconde configuration consiste en I’étude

de la résonance «lower-hybrid », qui conduit a une EDP dégénérée a changement de signe.

1.2 Ondes dans les plasmas

Les champs électromagnétiques dans un plasma sont décrits par quatre fonctions vectorielles

dans l’espace-temps :

le champ électrique E,
« le déplacement électrique D,

« le champ magnétique H,

le champ d’induction magnétique ou champ magnétisant B.

Ces quatre champs sont liés par les bien connues équations de Maxwell :

curlH = j+ @
ot
0B
lIE = ——,
cur . (11)
divD = p,
divB=0

ISource : https://www.iter.org/newsline/-/3037
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1.2. Ondes dans les plasmas

ou j est le vecteur de densité de courant et p est la densité de charge. En outre, elle est complétée

par les deux relations constitutives qui s’appliquent a I’échelle microscopique :
D = €OE, B= /loH,

ou g est la permittivité du vide et y est la perméabilité du vide. D’autre part, le milieu considéré
est un plasma, qui se caractérise par la présence de particules libres chargées électriquement,
telles que des électrons ou des ions. Par conséquent, une densité de courant j est induite par le
déplacement des charges a 'intérieur du plasma. La présence d’une telle densité de courant au
sein du plasma fait une différence majeure avec les milieux classiques. Plus précisément, nous
considérons un plasma froid magnétisé sans collision.

Le plasma peut étre décrit par deux approches qui ne sont pas équivalentes : ’approche
fluide avec la densité des particules et des électrons et 'approche cinétique avec la fonction
de distribution des particules. Notre plasma étant considéré comme froid, ’approche fluide est
pertinente. L’approche cinétique repose sur la théorie de Boltzmann et ne sera pas notre sujet
d’intérét. Le lecteur intéressé pourra se référer a [55, Chapitre 8, 56, Chapitre 4].

Par conséquent, étant donné ’ensemble des différentes especes d’ions S, nous pouvons dé-
composer le courant de plasma comme suit

Jj= st: Z-/Vsqsvs
s€S s€S
ou, étant donné une espéce ionique s € S, /¥ est la densité ionique, c’est-a-dire le nombre
d’ions par unité de volume, g, est la charge ionique et v; est la vitesse. La vitesse et les champs
électromagnétiques sont liés par I’équation de Navier-Stokes et la force de Lorentz :

0
%ms(§+(vs-v>vs) = #.gy(E + v x B) — div

ou estle tenseur de contrainte du fluide.

A ce stade, plusieurs hypothéses de simplification sont faites. Soit (e;, e,, 3) une base ortho-
normée de R®, avec (xy, x,, x3) les coordonnées associées. Tout d’abord, le plasma est froid et sans
collision. Par conséquent, le tenseur de contrainte fluide est négligé. Ensuite, nous linéarisons
I’équation autour de I'équilibre (v, E, B) = (0,0, By) ou By = Byes est le champ magnétique en
arriére-plan imposé au plasma. Nous supposons également que les densités d’ions ./ ne varient
pas dans le temps. Par conséquent, en développant v, E, B au premier ordre et en substituant ces
quantités dans I’équation de Navier-Stokes, on obtient

Ms 9 (g 4y xBy).

o my
Enfin, nous supposons que nous sommes en régime harmonique, c’est-a-dire que toutes les
quantités a(x, t) qui dépendent du temps peuvent étre développées comme a(x, t) = Re (a(x)e™™").
Les équations ci-dessus deviennent alors

—iwvs = kil (E + Vg X (B0e3)) .
mS

Les vecteurs propres de I'opérateur e; x - sont (e, ,e_, e3) avec e, = % (e; Fiey), et ils constituent
une base orthonormée de I’espace vectoriel complexe C3. Dans cette base, nous avons

‘Ajs,:l: = <&) : Ei: ‘Ajs,z = <&> LEZa

ms/) @ ¥F @, ms/ w
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B
avec weg = qrsno

=4 (As,x + if/s,y> et E, = %2 (Ex + iﬁy). Ensuite, la densité de courant j peut étre exprimée en

, la fréquence cyclotron associée a I'espece ionique s. On remarque que Vs, =

V2
fonction du champ électrique E dans la base (e, e, €3) :
2 2
_ Wp,s . We,sWp,s 0
W=, w(w?—wky)
P~ Vo= B . _ W 0% s
Js=Hsqvs = b, avec  (=iwg s et =it - 0
(‘)(w s W™= ¢
2
@
0 0 L=
W

Les matrices et sont respectivement appelées tenseur de conductivité et tenseur de suscepti-
Nog?
mséy ’

bilité électrique. Nous introduisons également la fréquence du plasma w, s =

Remark 1.2.1. L’approche peut étre généralisée a n’importe quel champ magnétique en arriére-
plan By(x). En fait, étant donné un point x dansR3, le tenseur de susceptibilité électrique (x)
est toujours diagonal lorsqu’il est exprimé dans la base constituée par les vecteurs propres de
lopérateur By(x) x -, cf. [31, Chapitre 2].

Enfin, si 'on revient aux équations de Maxwell exprimées en régime harmonique, on obtient

curl B = —%) E,
c (1.2)
curlE = iwB,

ouc = (/1080)_1/ 2 etle tenseur diélectrique du plasma froid est donné par

a —id 0
=L+) s=|i6 a of
s€S
0 0 ,5
2 2 2 1.3
wp,s 1 wc,swp,s Zses wp,s ( )
a=1-) 5 == ——— f=1-"p—
€8 W T s W Ses @7 T s @
2
_ CIsBO 2 _ /’/SCIS
Wes = , Wy s = .
mg ms&o

Faisons quelques commentaires sur le modéle ci-dessus. Tout d’abord, le tenseur diélectrique du
plasma froid varie en fonction de la variable d’espace x et de la fréquence du régime harmonique w.
En effet, les fréquences du plasma w), ; dépendent des densités d’ions N, et la dépendance en
la fréquence w indique que le modéle est manifestement dispersif. Deuxiémement, n’est pas
nécessairement positif pour toute fréquence en tout point de 'espace. Cette observation est a
la base de cette these et sera discutée dans les deux paragraphes suivants. D’autre part, le cas
uniformément positif ou uniformément négatif correspond aux équations de Maxwell classiques

qui ont déja été étudiées du point de vue mathématique depuis I’établissement de ces équations.

Le modeéle ci-dessus a été largement étudié par la communauté des physiciens, et nous

renvoyons aux monographies suivantes [55, 56, 39].

zwp,s ne dépend pas de la fréquence w, car /¥, ne dépend pas du temps.




1.3. Plasma dans un champ magnétique fort

1.3 Plasma dans un champ magnétique fort

Comme indiqué dans le dernier paragraphe, le tenseur diélectrique n’est pas nécessairement

positif. Si nous considérons la fréquence globale du plasma a)jz, = Y es a)%)s, alors nous avons
2

[0}
p=1- w—’z’ négatif chaque fois que @ < @,. D’autre part, nous pouvons clairement trouver les
fréquences wy, s et w s de telle sorte que le bloc 2 x 2

a —id

i o

est défini positif, ce qui est équivalent a a > |§|. Afin de simplifier ’analyse, nous supposerons
que le champ magnétique en arriére-plan B, a une magnitude trés importante, de telle sorte que
les fréquences cyclotron s sont tres grandes par rapport a la fréquence globale du plasma «y,.
Ensuite, compte tenu des expressions (1.3) de a et §, le tenseur diélectrique peut étre approximé

comme suit

10 0

=lo 1 o | (1.4)
2

001—%

Nous supposons dans la suite que cette approximation, que nous appelons limite du champ
magnétique fort, est valable dans tout I'espace libre, et que @, ne varie pas. L'objectif de la
premiére partie de cette thése est donc d’étudier le probléme posé dans ’espace libre :

Trouver E, B tels que
= 0w A 2
curl B+ ) E = j, (1.5)

A P ~
curlE — ioB = m,

ou certains termes sources j, m ont été ajoutés.

Alors que de nombreux travaux sont consacrés aux modeles isotropes, c’est-a-dire aux modeles
dans lesquels la permittivité diélectrique et la perméabilité magnétique sont toutes deux des
scalaires [10, 47, 11, 15, 16, 44, 8], peu de travaux sont consacrés aux milieux anisotropes, surtout
si le tenseur de permittivité diélectrique ou de perméabilité magnétique n’est plus de signe défini.
Remarquons qu’il existe des travaux consacrés a I’étude des équations de Maxwell avec des
tenseurs de perméabilité magnétique et de permittivité diélectrique elliptiques anisotropes [19,
21, 20], ce qui n’est malheureusement pas notre cas. Nous étudions ici ce qui est appelé des
métamatériaux hyperboliques, voir [53] et les références a I'intérieur. A notre connaissance, peu
d’analyses mathématiques [12, 22] sont consacrées a I’étude des métamatériaux hyperboliques.
On notera que les problémes hyperboliques dans le domaine des fréquences peuvent apparaitre
dans la dynamique des fluides, voir [28, 29]. En outre, les problémes hyperboliques en domaines
bornés ont été étudiés pour la premieére fois, a notre connaissance, dans [38].

Notre modele a déja été étudié dans le cas de champs électromagnétiques 2D, c’est-a-dire que
le champ magnétique et le champ électrique sont indépendants de la variable y dans [22] dans le

régime harmonique; voir [7, 6] pour son équivalent dans le domaine temporel.
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Remark 1.3.1. Le systéme peut étre réécrit dans le domaine temporel comme suit :
1
curl B — C—ZatE = fioJp,
curl E +9,B = 0.

ou 8t]p = Cdjzjfo(E . 33)63.

1.4 Plasma avec une densité variable

1.4.1 Plasma a une espece

Lorsqu’une onde électromagnétique est envoyée a 'intérieur d’un plasma, elle peut transférer
de I'énergie aux particules et produire un chauffage du plasma dans une région localisée. Ce
phénomene est lié & ce que ’on appelle les ondes résonantes et apparait avec la variation dans
I'espace des densités d’ions //;(x). Pour simplifier, nous supposons que le plasma est constitué

d’une seule espéce d’ions de densité //,(x). Par conséquent, le tenseur diélectrique

alx) —idé(x) 0
(x) =]i5(x) a(x) 0 |,

0 0 px)
varie également dans ’espace, ou «, §,  sont donnés par (1.3), ce qui peut étre écrit dans notre

cas comme ) ) )
B W} 1 0w B wp
a_l_—a — T T 5 5> ﬂ_l__;

w? — w? 0 w? — w? 2

B 2
w, = 9e 0, w% G A,
me Mefo

Nous supposons que la densité du plasma .4, varie dans '’espace de sorte que nous ayons
a(x) = 1= Couple(x),  6(x)= CspMe(x),  P(x) = 1= Cp o Me(x). (1.6)

Nous considérons une résonance «lower-hybrid » dans le plasma, voir [55, Chapter 2-6] et les
récents travaux [35, 26, 13, 14, 27, 25, 48, 50, 49], qui est caractérisée par le fait que & = 0 sur une
courbe a l'intérieur de la région. Comme dans les travaux cités ci-dessus, nous nous intéresserons
particuliérement aux cas ol la densité /,(x) est telle que le signe de @ change continiiment entre
deux sous-régions séparées par une interface.

Avec les notations évidentes, E = E;e; + Eye, + Eses, etc. Nous supposerons dans cette partie
que toutes les quantités sont indépendantes de x3, la variable correspondant a la direction du
champ magnétique extérieur, de sorte que E; = E;(xq, X3), etc. Alors, en développant la premiére
équation de (1.2), on a

8233 C(El — l(SEZ
—91B3 = _i;) l(SEl + QEZ
C
d1By — 9, By PE;

On observe que Ei, E,, B; et Es3, By, By sont indépendants dans I’équation ci-dessus. Cette observa-

tion est également valable pour la deuxiéme équation de (1.2). Ainsi, grace a la structure diagonale




1.4. Plasma avec une densité variable

de ,le systéme de Maxwell (1.2) peut étre divisé en deux systémes indépendants qui dissocient Es,
B, = Bje; + Bye; d’'une part, et E|, = E e + Eye,, By d’autre part. Au vu de 'équation précédente,
nous définissons les deux opérateurs différentiels suivants :

i f
curl, f = ’ ) curl, (fie; + faep) = 91 fo — I fi.

_al
Le systéme pour le mode Ordinaire est donc le suivant :

CllrlJ_ E3 = iQ)BJ_,

iwp (O-mode)
CurlJ_ BJ_ = __2E35
c
et le mode eXtraodinaire :
curl, E, =iwBs, o —is
iw avec | = . (X-mode)
CurlJ_ 33 = —— J_EJ_, 15 (04

c?

Pour la discussion qui suit, nous aurons besoin d’introduire quelques notations auxiliaires.
Soit x| = xje; + xp€9, A} vV = 911V + 999V, div, V = 9;v; + dovy et V| v = 9;ve; + dave,. Dans ce
cas, il est évident que curl, v = =R,/ V, vet curl, v = —div, R /pv, 0U R /5 = (975 ) estla
matrice de rotation /2 dans le plan orienté (e, e;). En particulier, curl, curl, v=—A, v.

Concentrons-nous maintenant sur les équations régissant les inconnues scalaires E; et Bs.
L’EDP du second ordre dérivée du systéme pour le mode ordinaire est — A E5 = wc—zzﬁE3. Dans le
cas ou le signe de ff change continuellement de signe, cette équation rappelle une équation d’Airy,
cf. [35].

D’autre part, 'EDP du second ordre dérivée du systéme (X-mode) est la suivante :

2
. _ @
div, (Rn'/Z TRy 3V, By) = 6—233-

Nous supposerons que le tenseur | est inversible partout dans la région, plus précisément que
a?(x,) — 8%(x,) # 0 pour tout x|, et donc que I'expression ci-dessus est bien définie. Définissons
le tenseur 2 x 2 suivant :

CZ a id

— 2 -1 —
=c Ril'/z 1 Rﬂ'/z - 52_0(2 _15 o

Ensuite, étant donné que « et § dépendent de la variable d’espace x,; seulement par I'intermé-
diaire de la densité du plasma //,(x, ), « et § ont les mémes courbes de niveau. De plus, en gardant
alesprit (1.6), 0 =1—6/87 ou 6™ = Cs,/Cprir-

Comme indiqué précédemment, nous supposons que le coefficient a(x, ) s’annule sur une
interface I. Compte tenu de la derniére remarque, le tenseur (x) est constant sur I, et est égal a

= iA, avec
2 [0 —=6F
T2 \st o
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qui est une matrice antisymétrique a valeurs réelles. Il s’ensuit que nous pouvons décomposer
(x,) comme
(x1) = —ap(x )H(x ) +iA, (1.7)
[

o(x1)

2
N ca . ys ,
ol gy = ——, et H(x ) est une matrice hermitienne donnée par

1 —i (5(xl) + a(xL)/(SJr)

H =
() i (5(x.) + a(x,)/6") 1

Dans ce qui suit, nous supposerons que H(x, ) est définie positive dans toute la région de calcul.

Cela implique en particulier que le déterminant de H(x ) est positif pour tout x|, ce qui conduit a
|5(XL) + a(xl)/5+| <1

Puisque A est antisymétrique, div; (A V, B3) = 0, et 'EDP du second ordre régissant B3 devient
donc
—diVJ_( OVLB?,)—Q)ZB?) =0. (18)

Nous supposons que la densité des électrons ./, est €2-réguliére, de sorte que , et H soient
également G2-réguliers. Etant donné x, sur I'interface I, notons n(x ) la normale a I'interface
au point x, . Alors, pour h un réel suffisamment petit, nous pouvons écrire le développement en

série de oy : )
oo 2°q
a(x, + hn(x,)) = a—rf(xL)h + K2°(xl)hz + O6(h).

Par conséquent, nous supposons a partir de maintenant que |y(x )| se comporte dans un voisinage
de l'interface I = {oy(x,) = 0} comme dist(x, I) et ne dégénérent pas au sens ou il existe une
constante ¢ > 0 telle que ‘%(x L)‘ > cpour tout x; € I Nous supposons également que l'interface
I est une boucle C! (sans auto-intersection).

Ainsi, considérer le modéle dérivé du mode eXtraodinaire avec B3 inconnu dans le voisinage
de l'interface conduit a une EDP elliptique dégénérée. La communauté mathématique étudie les
modéles dérivés du cadre des ondes dans le plasma froid depuis une décennie environ, cf. [25,
2, 26, 7, 42]. La résolution de cette équation sera l’objectif de la deuxiéme partie de cette thése.
Ce probleme a déja été étudié dans [49], oil une méthode numérique basée sur une formulation

variationnelle mixte a été proposée.

Remark 1.4.1. Remarquez que d’autres hypothéses peuvent étre faites sur le comportement de
o : dist(x, I)?, dist(x, I)3, ou méme une puissance fractionnaire. Cela signifierait que %(x 1)
s’annule pour tout x, sur l'interface. En particulier, cela conduirait a un type de singularité
différent de celui étudié dans cette thése. De plus, cela ne semble pas pertinent d’un point de vue
physique puisque la densité du plasma est réguliere en pratique, et nous excluons clairement la

présence de chocs.

1.4.2 Plasma général

Le probléme décrit ci-dessous n’a pas été étudié dans cette thése. Néanmoins, nous pensons qu’il
est intéressant de le formaliser, car il apparait que de tels problémes peuvent étre liés a la littérature

existante, ouvrant ainsi de nouvelles perspectives.
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L’argument développé pour un plasma a une espéce ne peut pas étre appliqué sans adaptation
a un plasma réel, qui a en général 2 espéces au moins (les électrons et les ions). Dans ce cas, en

utilisant (1.3), nous avons

a(x) =1- Z Cs,a,w‘/Vs(x)’ 5(-’") = Z Cs,é,w‘/Vs(x),

seS s€S

avec Gy, > 0 et G5, € R pour toute espéce s € S. On notera que Cs 5, > 0 (respectivement
Cs 5.0 < 0) pour les espéces chargées positivement (resp. négativement), comme I'indiquent les
équations (1.3).

Comme précédemment, nous supposons que le probléme est indépendant de x3, de sorte que
le probleme peut étre séparé en modes ordinaires et extraordinaires, et que le signe de @ change a
travers une interface I Nous supposons que les densités des espéces d’ions sont au moins %2, et la
méme hypothése s’applique a d et a. En outre, |a(x, )| se comporte dans un voisinage de I'interface
I = {a(x,) = 0} comme dist(x |, I) et ne dégéneérent pas au sens ou il existe une constante ¢ > 0
telle que ‘%(XL)‘ > cpour toutx; € L.

Si nous reproduisons I’analyse précédente, le blocage provient du fait que a(x ) et 5(x,)
ne partagent pas les mémes courbes de niveau. Par conséquent, la matrice (x;) n’est plus
constante sur I'interface I, et nous ne pouvons pas définir une matrice constante A telle que la
décomposition (1.7) soit valide.

Nous pouvons néanmoins formaliser le probléme de la maniére suivante. La valeur de  sur

Uinterface est (x,) = iA(x,) avec

c? 0 —6(x,)
S(x )P \8(x) 0

Ax,)) = , withx, €L

11 est possible d’étendre la définition de cette matrice a ’ensemble du domaine. Pour tout x;
dans le domaine, il existe (x,) € [, la projection de x, sur U'interface I, et s(x;) € R tel que
X, = P(x)) + s(x )n(P(x,)), ou n(y ) est le vecteur normal unitaire a I'interface au point
y. € I Nous pouvons raisonnablement supposer que la derniére décomposition est unique dans
le domaine qui nous intéresse. Par conséquent, nous étendons facilement A dans ’ensemble du

domaine comme suit :

2 0 —5(&
Ay = —E (P00
S(P(x )" \6(£(x1)) 0
Ensuite, nous factorisons la matrice = —ayH + iA comme précédemment, avec g = azcz_ogz et
1 i5(x,) “ 5(x,) (8(P(x))) — 8(x))) + a(x,)?
Hep - [ D) ey = S GEP0)) ~0x)) + e )"
—id(x ) 1 (P (x))a(x,)

En raison de ’hypothése de régularité, § ne dégénére pas dans le voisinage de I'interface. En effet,
le développement de @ et § pour h € R petit et x, € I, c’est-a-dire,

80, +hnGx,) = 5(x.) + 2 (x)h + O(R2),

a(x, +hn(x)) = %(xl)h + O(h?),
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donne

B(x, +hn(x,)) = 2 1 6(h).

Par conséquent, la matrice H est hermitienne, continue, et nous supposons également qu’elle
est définie positive dans la région de calcul, ce qui exige que 5| < 1. Ensuite, nous observons
que nous pouvons également calculer la dérivée normale de la matrice A, qui est ainA = Ope=2
par construction. Nous dirons donc que A est transverse. Enfin, I’équation du probléme peut étre
résumée comme suit :

—div, ( V| Bs) —w?B; =0, (1.9)

avec = oplH +iA, et

« g est une fonction continue, qui change de signe au travers d’une interface I, dont la dérivée

normale ne s’annule sur I,
+ H est une matrice hermitienne uniformément elliptique sur le domaine,

. . s T . 0A
« A est une matrice antisymétrique, transverse a 'interface, dans le sens ou =—

on I = O]RZXZ.

En fait, ce type d’opérateur a déja été partiellement étudié, sans changement de signe, mais
seulement avec la dégénérescence a la frontiére dans la thése de BAOUENDI. On peut aussi se

référer a [4, 3].

1.5 Plan de la these

Ce travail est divisé en deux parties.

La premiére partie consiste en I’étude du modéle de plasma avec un fort champ magnétique
en arriere-plan, ce qui correspond a un métamatériau hyperbolique. L’objectif est d’étendre les
résultats de [22] au cas 3D et de dériver une condition de rayonnement. Le chapitre correspondant
introduit une décomposition des champs électriques et magnétiques ressemblant a la décomposi-
tion habituelle TE et TM, puis il donne quelques résultats sur les deux problémes résultants. Les

résultats sont trés partiels et constituent une ébauche sur le sujet.

La seconde partie consiste en I’étude de 'EDP dégénérée associée a I’équation (1.8). Le pro-
bléme aux limites associé est bien posé dans un cadre variationnel « naturel ». Cependant, ce
cadre n’inclut pas le comportement singulier présenté par les solutions physiques obtenues via le
principe d’absorption limite, cf. [35, 14]. Remarquez que ce comportement singulier est important
du point de vue physique puisqu’il induit le chauffage du plasma mentionné précédemment, voir
aussi [27].

Le chapitre 4 introduit le probléme dans un cadre simplifié et équivalent, et nous rappelons
la formulation variationnelle utilisée dans [49] pour calculer les solutions singuliéres. Ensuite,
le chapitre 5 étudie une sous-classe particuliére de problémes pour laquelle nous prouvons le
principe d’absorption limite, et nous discutons de la régularité des solutions.

Le chapitre suivant 6 améliore le cadre fonctionnel de la formulation variationnelle proposée
dans [49]. Nous prouvons la cohérence de la formulation variationnelle avec le principe d’ab-

sorption limite. Puis, nous établissons des résultats d’unicité et de stabilité de la solution de la

10
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version non régularisée du probléme. Un des résultats clés de ce chapitre est la définition d’une
notion faible de saut a travers linterface a I'intérieur du domaine, qui permet de caractériser la
décomposition de la solution d’absorption limite en une partie réguliere et une partie singuliére.
Les résultats de ce chapitre peuvent étre trouvés dans [23].

Enfin, le chapitre 7 propose deux formulations variationnelles alternatives. Nous comparons
les performances numériques des différentes formulations variationnelles introduites dans cette

deuxiéme partie de la thése.

11
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CHAPTER 2

Electromagnetic waves in plasma
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2.1 Introduction on plasma

Plasma is the fourth state of the matter, and the more abundant form of matter in the universe.
It is characterized by the presence of charged particles and ions, with proportions and densities
which may vary in space and time. The temperature of a plasma is typically much higher than
the ambient temperature, often exceeding several thousand Kelvin degrees. On Earth, plasmas
are mainly used for industrial purpose. One of the most frequently cited example of industrial
use is electric energy production via fusion nuclear reactors. Actually, this motivates large facets
of academic and industrial research. Different kind of reactors are investigated nowadays, as
Tokamaks [37], or Stellarators [39, Chapter 17].

There are several challenges to achieve a stable fusion reaction inside these reactors. We
specify here three of them. The first one is the containment of the plasma inside the reactor. To
do so, several devices are arranged such that poloidal and toroidal magnetic fields and a toroidal
electric current are imposed [36], see Figure 2.1. It results in an imposed helical magnetic field.
Nevertheless, this kind of installation is not sufficient to prevent instabilities of the plasma. In
order to contain the plasma properly, measurements of the density of the plasma must be done.
Because of the extreme temperature, intrusive measurement is impossible. Then, the second
challenge consists in control the density of the plasma via reflectometry methods [43, 40, 30, 33]. It
consists in sending electromagnetic waves with different frequencies and measuring the response.
Finally, the last challenge is the plasma heating, and is done by sending electromagnetic waves at

specific frequencies and directions depending on the characteristics of the plasma. Theoretically,
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there is currently three kinds of usable waves [39, Chapter 12]: ion cyclotron frequency waves,

electron cyclotron frequency waves and lower-hybrid waves.

central solenoid

poloidal magnetic field
outer poloidal field coils

helical magnetic field toroidal field coil

plasma electrical current toroidal magnetic field

Figure 2.1: Representation of the magnetic fields and current inside a tokamak'.

In order to deal with these challenges, a fine description of the electromagnetic fields inside the
plasma are required. This report describes the work done on two very simplified configurations.
Both configurations consider magnetized plasma with a constant imposed magnetic field By = Bye,.
The first configuration results in a non-standard hyperbolic partial differential equation in space.
The second configuration consists in the study of the lower-hybrid resonance, which leads to a

sign-changing degenerate PDE.

2.2 Waves in plasma

The electromagnetic fields in a plasma are described by four vector-valued functions in space-time:

the electric field E,

the electric displacement D,
« the magnetic field H,
« the magnetic induction or magnetizing field B.

These four fields are linked together by the well-known Maxwell’s equations:

curlH = j + @,
ot
oB
curlE = ——,
ot (2.1)
divD = p,
divB=0

where j is the current density vector and p is the charge density. Additionally, it is completed by
the two constitutive relations that holds at the microscopic scale:

D= EOE, B= ,UoH,

ISource: https://www.iter.org/newsline/-/3037
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2.2. Waves in plasma

where & is the vacuum permittivity and y is the vacuum permeability. On the other hand,
the considered medium is a plasma, which is characterized by the presence of free electrically
charged particles, such as electrons or ions. Consequently, a current density j is induced by the
displacement of the charges inside the plasma. The presence of plasma current density makes a
major difference with the classic medium because the plasma is made of free charges and these
charges obviously move. More precisely, we consider a cold magnetized collisionless plasma.
The plasma can be described by two approach which are not equivalent: the fluid approach
with the density of the particles and electrons and the kinetic approach with the distribution
function on the particles. Because our plasma is considered cold, the fluid approach is relevant.
The kinetic approach relies on the Boltzmann theory and will not be our subject of interest. The

interested reader may refer to [55, Chapter 8, 56, Chapter 4].

Therefore, given the set of different ion species and electrons S, we can decompose the plasma

j:st:Z‘/V;qsvs

s€S seS

current as

where, given an ion species s € S, J/ is the ion density, i.e., the number of ions per volume unit, g,
is the ion charge and v; is the velocity. The velocity and the electromagnetic fields are linked via
the Navier-Stokes equation and the volume Lorentz force:

oV,

,/Vsms(g'f'(vs'v)vs) :'/Vsqs(E""vsXB)_diV >

where is the fluid constraint tensor.

From this point, several simplification assumptions are made. Let (ey, e, e3) be an orthonormal
basis of R3, with (x;, x,, x3) the normalized orthogonal coordinates. Since the plasma is cold and
collisionless, we neglect the fluid constraint tensor . Next, we linearize the equation around the
equilibrium (v, E, B) = (0,0, By) where B, = Byes is the background magnetic field imposed to
the plasma. Therefore, expanding v;, E, B at the first order and substituting these quantities into

the Navier-Stokes equation yields

oV
— zﬁ(E+vs><B0).
ot my

Finally, we assume that we are in time-harmonic regime, i.e., all the quantities a(x, t) which depend

on time can be expanded as a(x,t) = Re (&(x)e_ia’t). Then, the equations above becomes

—iwv, = s (E + v X (B0e3)) .
m

S

The eigenvectors of the operator e; x - are (e, e_,e3) with e, = % (e; F iey), and they constitute

an orthonormal basis of the complex vector space C3. In this basis, we have

A qs i A « s\ i A
Vs & = ( E,, Vsz = —E,
mg) o F w, mg/) @

. B . . . . . A
with w, = qrsno, the cyclotron frequency associated with the ion species s. Notice that ¥, =
S

1 [~ s Ao 1
E(s,xiws,ﬂ and E, = 7

(Ex + il:?y). Then, the current density j can be expressed in function

15
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of the electric field E in the basis (e;, e;, e3):

B W s i W s s 0
a)z—c;cz)s w(w?—wls)
Js = Ngevs = E  with [ =iwg  and = |[;_2ehs —Ops o |
wo(w?—wgs) W —wl
0 0 “rs

where we assumed that the ion densities .4 do not vary in time. The matrices and g are

respectively called conductivity tensor and electric susceptibility tensor. Notice the introduction
2
of the plasma frequency w, s = \/E
’ msé&o

Remark 2.2.1. The approach can be generalized to any background magnetic field By(x). Actually,
given a point x € R3, the electric susceptibility tensor (x) is always diagonal when it is expressed
into the basis constituted by the eigenvectors of the operator By(x) x -. One can refer to [31,
Chapter 2].

Finally, going back to the Maxwell’s equations expressed in time-harmonic regime leads to

curl B = —%) E,
c (2.2)

curl E = ia)1§,

where ¢ = (,uoeo)_l/ 2 and the well-known cold plasma dielectric tensor is given by

a —id 0
seS
0 0 g
2 2 2 23
Wp,s 1 We,sWp,s ZsGS Wp,s @3)
a=1-) . S==) ———. f=1-—p—
ses W7 T Wes W ses W~ Wes @
2
_ quO 2 ‘/V;%
Wes = , Wps = )
m ms&o

Let us make few comments about the model above. Firstly, the cold plasma dielectric tensor
varies within the space variable x and the frequency of the harmonic regime w. Indeed, the plasma
frequencies w, ; depend on the ion densities N2, and the dependence on the frequency w indicates
that the model is clearly dispersive. Secondly, is not necessarily positive for any frequency at
any point of the space from the physics. This observation is the basis of this thesis and will be
discussed in the two following paragraph. On the other hand, the case uniformly positive or
uniformly negative corresponds to the classical Maxwell’s equations which have already been

studied from the mathematical point of view since the establishment of these equations.

The model above has been extensively studied in the Physics community, and we refer to the

following monographs [55, 56, 39].

Notice that @, ; does not depend on the frequency  because .#; does not depend on time.
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2.3 Plasma in a strong background magnetic field

As noticed the last paragraph, the dielectric tensor is not necessarily positive. If we consider

global plasma frequency wjz, = DS a)j%,s, then we have f =1— % negative whenever 0 < @ < w,,.
On the other hand, we can clearly find frequencies wj, s and @, in such way that the 2 x 2 bloc

a —id
i o

is positive definite, which is equivalent to @ > |5|. In order to simplify the analysis, we will assume
that the background magnetic field By has a very large magnitude, in such way that the cyclotron
frequencies w. ; are very large compared to the global plasma frequency w,,. Then, in the view of
the expressions (2.3) of @ and 4, the dielectric tensor can be approximated for a given frequency

w>0as
1 0 0
=10 1 0 . (2.4)
2
0 0 1—%

We assume in the following that this approximation, which we denote strong magnetic field limit,
is valid in the whole free space, and that &, does not vary in the whole space R3. Then, the
objective of the first part of this thesis is to study the problem posed in free space:

find E, B such that

where some source terms j, m have been added.

Whereas numerous works are devoted to isotropic models, i.e., models where both the dielec-
tric permittivity and the magnetic permeability are scalars [10, 47, 11, 15, 16, 44, 8], few works are
dedicated to anisotropic media, especially if the dielectric permittivity or magnetic permeability
tensor is no longer sign-definite. Let us remark that there exist works dedicated to the study of
Maxwell’s equations with anisotropic elliptic dielectric permittivity and magnetic permeability
tensors [19, 21, 20], which is unfortunately not our case. We study so-called hyperbolic metama-
terials, see [53] and references therein. As far as we know, few mathematical analyses [12, 22]
are devoted to the study of hyperbolic metamaterials. Notice that hyperbolic problems in the
frequency domain may appear in fluid dynamics, see [28, 29]. Moreover, hyperbolic problems in
bounded domains were first studied up to our knowledge in [38].

Our model has already been studied in the case of 2D-electromagnetic fields, i.e., the magnetic
field and the electric fields does not depend on the y-variable in [22] in the harmonic regime, see

[7, 6] for its time domain counterpart.

Remark 2.3.1. The system without source term can be rewritten in the time domain as:
1
curl B — c—zatE = fioJp,
curlE + 9,B = 0.

where d;], = a)f,so(E - e3)es.
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2.4 Plasma with a varying density

2.4.1 Single species plasma

When an electromagnetic wave is sent inside a plasma, it can transfer energy to the particles
to produce plasma heating in a localized region. This phenomenon is related to the so-called
resonant waves, and appears with the variation in space of the ion densities .#;(x). For simplicity,
we assume that the plasma is constituted by only one ion species of density .#,(x). Therefore, the
dielectric tensor
alx) —idé(x) 0
(x) =1id(x) alx) 0 |

0 0 p)

also varies in space, where «, §, f are given by (2.3), which can be written in our case

2 2 2
B Wy 1 @ B wp
a=1-——0, O0=———7, f=1-—,
w* — g W w* — W W

2

quO 2 4e

. = , wp = N
m My

We assume that the plasma density ¥, varies in space so that we have
a(x) =1- Ca,a)-/yé(x)s 5(3(): C(S,w‘/'/e(x)’ ﬂ(x) =1- Cﬁ,w/'/e(x)~ (2'6)

We consider a lower hybrid resonance in the plasma, see [55, Chapter 2-6] and recent works [35,
26, 13, 14, 27, 25, 48, 50, 49], which is characterized by the fact that « = 0 on some curve inside
the region. Like in the above cited works, we will be particularly interested in the cases when
the density //;(x) is s.t. the sign of a changes continuously between subregions separated by an
interface.

With obvious notations, E = E;e; + Eye; + Eses, etc. We will assume in this part that all
quantities are independent of x3, the variable corresponding to the direction of the exterior

magnetic field, so that E; = E{(xy, x5), etc. Then, expanding the first equation of (2.2), one have

82B3 C(El — l(SEZ
—81B3 _i;) l(SEl + aE2 .
C
d1By — 9, By PE;

Observe that E;, E5, B3 and Ej3, By, B, are independent in the equation above. This observation
is also valid for the second equation of (2.2). Hence, thanks to the block diagonal structure
of , the Maxwell system (2.2) can be split into two independent systems that dissociate Es,
B, = Bje; + Bye; on one hand, and E| = E e; + Ese,, B3 on the other. In the view of the previous
equation we define the two following differential operator

a f

_al

curl, f = ( ) curl, (fieq + faep) = 91 f2 — a2 f1.
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Then, the system for the Ordinary mode is:

curl, E; =iwB,

iwp (O-mode)
curl, B, = ——Es,
c
and the eXtraodinary mode:
curl, E, =iwB;, o —is
; where = . (X-mode)
CurIJ_B:; - —% J_EJ_, + 15 (4
c

For the discussion that follows, we will need to introduce auxiliary notation. Let x;, =
xX1€1 + X2€9, A| V = 911V + 099V, div| V = 91V + doVv, and V| v = dyve; + dyve,. In this case we
evidently have that curl, v = —R; /, V, vand curl, v = —div, R, /,v, where R, /5 = (975) is the
7 /2 rotation matrix in the oriented plane (e, e5). In particular, curl; curl, v=—A, v.

Let us now focus on the equations governing the scalar unknowns E5 and Bs. The second-
order PDE derived from the system for the Ordinary mode is —A| E3 = wC—ZQ'BE:;. In the case when
the sign of ff changes continuously, this equation is reminiscent of an Airy equation, cf. [35].

On the other hand, the second-order PDE derived from the (X-mode) is

2
. — w
leJ_ (Rﬂ-/z J_lRﬂ-/z VJ_ B3) = c—233

We will assume that the tensor | is invertible everywhere in the region, more precisely, that
a?(x,) — 8%(x)) # 0 for all x,, and thus the above expression is well-defined. Let us define the

two-by-two tensor
2 a id
2 -1 ¢
= c“R Riyp=—=—— .
/2 L /2 52—0(2 (_15 a)

Then, since it holds that @ and § depend on the space variable x| only via the density of the
plasma /#,(x ), « and § have the same level curves. Moreover, with (2.6) in mind, « = 1 — §/8"
where 57 = Cs,/Cp0o-

As discussed before, we assume that the coefficient a(x ) vanishes on some interface I In

view of the last remark, the tensor (x,) is constant on [, and is equal to = iA, with

2 (o —5*)
A= ,
st2\st o0

which is a real-valued skew-symmetric matrix. From this it follows that we can decompose (x)
as
(x1) = —ap(x JH(x ) +iA, (2.7)
—

o(x1)

2
where o = %, and H(x ) is a Hermitian matrix given by

1 —i (8(x,) + a(x,) /5+))

H -
() (i (6(x.) + a(x1)/8%) 1

19



Chapter 2. Electromagnetic waves in plasma

In what follows, we will assume that H(x ) is positive definite in the whole computational region.
This requires in particular that the determinant of H(x ) is positive for all x,, which leads to

|5(XJ_) + Of(XJ_)/5+| <1
Since A is skew-symmetric, div, (A V, B3) = 0, so the second-order PDE governing B; becomes
- diVJ_ ( 0 VJ_ B3) - 0)233 =0. (28)

We suppose that the electron density ./, is €2-regular, so that &y, and H are also ¥2-regular.
Given x| on the interface I, let n(x, ) be the normal to the interface at the point x, . Then, for h a
real small enough, we can write the series expansion of ¢:

80{0

2
op(x, +hn(x,)) = E(XL)}I + %(xl)hz + O(h).
Therefore, we assume from now on that |a(x, )| behaves in a neighborhood of the interface
I = {ay(x) = 0} like dist(x |, I) and does not degenerate in the sense that there is a constant ¢ > 0
such that ‘%(x L)‘ > cfor all x;, € . We also assume that the interface Iis a C!-loop (without
self-intersections).

Since we are interested in the behavior of the physical solution in a neighborhood of the
interface, we do not consider the problem in the whole space R3, but rather inside a bounded
domain D which contains the interface. Then, several boundary conditions exist on dD: Dirichlet
conditions, Neumann conditions, Robin conditions, and absorbing conditions. By simplicity, we
will mostly use absorbing conditions

0VJ_B3 ‘n+ lABg = f, on aD,

where frepresents some source term. Notice that absorbing conditions may be used to model
emitting or receiving antennas.

Considering the model derived from the eXtraodinary mode with unknown Bj; in the neigh-
borhood of the interface leads to a degenerate elliptic PDE. The Mathematics community studies
the models derived from the framework of the waves in the cold plasma from a decade [25, 2, 26,
7, 42]. How to solve this equation will be the goal of the second part of this thesis. This problem
has already been investigated in [49], where a numerical method based on a mixed variational
formulation was proposed.

Remark 2.4.1. Notice that other assumptions could be made on the behavior of a: dist(x,, I)?,
dist(x, I)3, or even a fractional power. It would mean that %(x ) vanishes for all x;, on the
interface In particular, this would lead to a different type of singularity than the one studied in
this thesis. Moreover, it does not seem relevant from the physical point of view since the density

of the plasma is smooth in practice, and we clearly exclude the presence of shock.

2.4.2 General plasma

The problem described below has not been studied in this thesis. Nevertheless, we think that it is
interesting to formalize it because it appears that such problems may be connected to some existing

literature, opening new perspectives.
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2.4. Plasma with a varying density

The argument developed for single species plasma cannot be applied without adaptation for
a real plasma, which as in general 2 species at least (the electrons and the ions). In that case,
using (2.3), we have

a(x) =1= Y Copuly(x),  8x) =) Cis (%),

seS seS
with C; 4, > 0 and G5, € R for all species s € S. Notice that C 5, > 0 (respectively C s, < 0)
for positively (resp. negatively) charged species, as indicated by equations (2.3).

As before, we assume that the problem is independent of x3, so that the problem can be
separated into ordinary and extraordinary modes, and the sign of « changes through an interface I
We assume that the densities of the ion species are at least €?-regular, and the same assumption
applies to d and a. Moreover, |a(x )| behaves in a neighborhood of the interface I = {a(x,) = 0}
like dist(x,I) and does not degenerate in the sense that there is a constant ¢ > 0 such that

%(XL)‘ >cforallx, €l

If we replicate the previous analysis, the bottleneck arises from the fact that a(x, ) and §(x )
do not share the same level curves. Therefore, the matrix (x,) is no longer constant on the
interface I, and we cannot define a constant matrix A such that the decomposition (2.7) holds.

Nonetheless, we can still formalize the problem in the following way. The value of on the

interface is (x,) = iA(x,) with

Ay = & ( 0 —8(x))

5(3&)2 5(x,) 0

It is possible to extend the definition of this matrix to the whole domain. For all x, in the

), withx, € L

domain, there is P(x,) € I, the projection of x; on the interface I, and s(x;) € R such that
x| = P(x,)+s(x; )n(P(x,)), where n(y, ) is the unit normal vector to the interface at the point
y. € I We can reasonably assume that the last decomposition is unique in the domain of interest.

Therefore, we easily extend A in the whole domain as

§(2(x )" \6(£(x1)) 0
Then, we factorize the matrix = —ayH + iA as before, with o = % and
1 ib(xy) < 8(x1) (B(P(x)) = 8(x))) + a(x,)?
- o bx,)) = .
HE) (—ig(xL) 1 ) () PO axs)

Due to the regularity assumption, & does not degenerate in the neighborhood the interface. Indeed,

expanding a and 6 for small h € R and x; € I, that is,
B0k, + hnx,)) = 80x,) + 22, )h -+ O(R?)
a(x, +hn(x,) = S2(x Dh+ O(h),

yields

5(x, +hn(x))) = w0 + O(h).
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Chapter 2. Electromagnetic waves in plasma

Therefore, the matrix H is Hermitian, continuous, and we also assume that it is positive
definite in the computational region, which requires that |S | < 1. Next, observe that we can also
compute the normal derivative of the matrix A, which is %A = Ogz«2 by construction. Therefore,
we will say that A is transverse. Finally, the equation of the problem can be summarized as

—div, ( V| B3)—w?B; =0, (2.9)
with = ogH + iA, where

* a is a continuous sign-changing function, whose normal derivative does not vanish on the

locus of the sign-change,
« H is a hermitian matrix uniformly elliptic on the domain,
+ A is a skew-symmetric matrix, transverse to the interface, in the sense that Z—IINI = Opa<.

Actually, this type of operator have already been partially studied, without the sign change but
only with the degeneracy at the boundary in the thesis of Baouendi [5]. One may refer also to [4,
3].

2.5 Outline

This work is divided in two parts.

The first part consists in the study of the model of plasma in a strong background magnetic
field, which corresponds to a hyperbolic metamaterial. The objective is to extend the results of
[22] to the 3D-case and to derive a radiation condition. The corresponding chapter introduces a
splitting of the electric and magnetic fields resembling the usual TE and TM decomposition, then,
it gives some results on the two resulting problems. The results are in a very partial state, and
constitute a rough draft on the subject.

The second part consists in the study of the degenerate PDE associated to the equation (2.8)
augmented by absorbing boundary conditions. The associated boundary-value problem is well-
posed within a “natural” variational framework. However, this framework does not include
the singular behavior presented by the physical solutions obtained via the limiting absorption
principle, cf. [35, 14]. Notice that this singular behavior is important from the physical point of
view since it induces the plasma heating mentioned before, see also [27].

Chapter 4 introduces the problem in a simplified and equivalent setting, and we recall the
variational formulation used in [49] to compute the singular solutions. Then, Chapter 5 studies
a particular subclass of problem for which we prove the limiting absorption principle, and we
discuss the regularity of the solutions.

Next, Chapter 6 improves the functional framework of the variational formulation proposed

n [49]. We prove the consistency of the variational formulation with the limiting absorption
principle. Then, we establish uniqueness, and stability results of the solution of the non-regularized
version of the problem. One of the key results of this chapter is the definition of a notion of weak
jump through the interface inside the domain, which allows to characterize the decomposition of
the limiting absorption solution into a regular and a singular parts. The results of this Chapter

can be found in [23].
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Finally, Chapter 7 proposes two alternative variational formulations. We compare numerical
performance of the different variational formulations introduced in this second part of the thesis.
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CHAPTER 3

Hyperbolic Maxwell problem in free space
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Given an exterior magnetic field By = Bye, with By — 400, the harmonic Maxwell’s equations
in a cold plasma are

curl B + W _ 0,
2
curlE — iwB = 0,

where E, B are perturbations of the electromagnetic fields at equilibrium, and the dielectric tensor

becomes a symmetric dielectric tensor given by

10 0 2
=lo 1 o | withf@=1-—. (3.1)
w
0 0 plw



Chapter 3. Hyperbolic Maxwell problem in free space

We immediately notice that is not necessarily a sign-definite matrix (i.e., a matrix with non-
vanishing eigenvalues of the same sign) because 1 — Z—g’ < 0 for 0 < w < w,. Moreover, is not
elliptic, even for non-standard definition of elliptic tensor [19].

Finally, up to a renormalization! of w, Wp E and B, we assume that the speed of light is ¢ = 1.

Introducing source terms j, m, we rewrite the problem to solve as

find E, B such that

curl B+iw E = j, (3.2)

curlE — ioB = m.
This problem has already been investigated in [22]. With the assumption of 2D-fields, the
transverse electric and the transverse magnetic are decoupled. Then, it has been showed in [22]
that the transverse magnetic problem solves a hyperbolic equation in free space, whereas the
transverse electric problem solves an elliptic equation problem. The goal of this chapter is to
extend the results to the case of 3D-fields and to provides insights into a Silver-Miiller condition,
which is the equivalent of the radiation condition for Maxwell’s equation.

The first difficulty is the splitting of the problem into two sub-problems, each of which captures
either the elliptic or hyperbolic behavior of the problem. This is the subject of the first section,
which will supply sub-problems : the transverse electric problem and the transverse magnetic
problem. These problems share analogous properties with the classic ones. Then, the second
and third sections are devoted to the transverse electric and magnetic problems. The transverse
magnetic problem will have an important step in the resolution of a 3D hyperbolic scalar problem

in free space.

3.1 Problem splitting

3.1.1 Problem with absorption

We begin the study of the system with a simple case to solve: this is the case where w € C\ 'R, so
that w® ¢ R™.
We suppose that j, m, E, Bare in L? (R®) := (L? (]RS))3. Subsequently, this requires that curl E
and curl B belong also to L (R®). Thus, it is natural to first look for solutions in
H(curL;R®) :={F € L? (R®) ;curl F € L* (R*)}.

Thus, the inhomogeneous problem is written as:

find (E,B) € (H (curl; IR3))2 such that
curl B+ivw E = j, (3.3)
curlE — ioB = m,
with given by (3.1) and j,m € L? (R*). We can eliminate B from the above and rewrite the
problem as a second order system:
findEe H (curl; 1R3) such that

) (3.4)
curlcurlE — w° E = F,

. . . ~ W, ~ iad
IThe renormalization is £ = &, £ = &, and cB = B.
c

c
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3.1. Problem splitting

’

where F = curlm + iwj € H(curl; ]R3)

Remark 3.1.1. Given m € L? (1R3), curlm is well-defined in the sense of the distributions &’ (]R3)
and can easily be extended by continuity in H (curl; 1R3)I:

(curlm, g) i curtR3Y HicurtR?) = J m - curl g dx.
; R
Notice that the duality bracket is linear with respect to the first variable and antilinear with
respect to the second one.

Consider the following sesquilinear form, associated with the equation (3.4), defined on
H (curl; ]R3) x H (curl; ]R3) by:

ag(f, g) = J (curlf ccurlg— *f g+ wf,fzg) dx.
R3
The index E stands for electric. Then, the variational form of the (3.4) problem is:
findEe H (curl; 1R3) such that

(3.5)
ag(E, g) = (F, g>H(curl;]R3)’ Vg € H(curl; IRS) .

with F € H(curl; 1R3)/. The following lemma shows the equivalence between the problems (3.3)
and (3.5).

Lemma 3.1.2. E is a solution of (3.5) with F = curlm + iwj, if and only if (E, B) € H (curl; IR3)2
is solution of (3.3).

Proof. Let (E, B) be solutions of (3.3). Then, E solves (3.4) in H(curl; ]R3),. Testing the equation
against g € H(curl; 1R3) and integrating by parts gives the result.
On the other hand, given E € H (curl; IR3) be a solution of (3.5), B = % (curlE —m) € L? (1R3).

Then, (E, B) solves (3.3) in (QZ’ (1R3))3. Finally, because L2 (1R3) S (9' (]R3))3, the equalities
hold in L? (R®) and B € H (curl;R®). O
Lemma 3.1.3. Ifw € C\ R, then the problem (3.5) admits a unique solution and there exists C > 0
depending on w such that

VEl pxgeurtr®y < Co WFlpeurtey -
Proof. The proof is based on the Lax-Milgram theorem. In fact, Fis by definition a continuous anti-
linear form on H (curl; IR3) and ag is a continuous sesquilinear form on H (curl; IR3) xH (curl; le).

Then, it remains to check. The following identity allows us to check the coercivity of ag on
H (curl; ]R3), which concludes the proof:

Im (ap(f, wf)) = = Im(w) (Jeurl fi72gs) + o I flZzceey + @b £l 2gs)) -

The previous lemmas finally allow us to conclude in the case where w € C\ R:

Theorem 3.1.4. Ifw € C\ R, the problem (3.3) is well-posed, i.e., there is a unique solution (E, B) €
(H (curl; ]R3))2 and there exists C,, > 0, which depends on w, such that

I ety + BIcurtzsy < Coo (1il2gsy + ImlZs gy )

29



Chapter 3. Hyperbolic Maxwell problem in free space

3.1.2 Plane wave analysis

We have seen in the previous section that the system (3.3) is well-defined in the case where
w € C\R. However, similarly to the Helmholtz equation, this approach is not valid for w € R.
Then, seeking for plane waves solutions shows that two kind of plane waves can appear. This
leads to split the problem (3.3) into two sub-problems, one carrying the hyperbolic behavior of
the system and the other carrying the elliptic behavior of the system.

This idea comes from [6], where the time dependence, however, was considered. The study
starts with the analysis of the plane waves of the problem. We seek solutions of (3.2) in the form

E(x) = E¢** with k € R®. Then, given a plane wave Ee**, it solves

curlcurlE — w? E =0, (3.6)

if and only if

A

—kx(kxﬁ‘)—wz Ez—kx(kxﬁ‘)+co12,(f,‘-ez)ez—w2E=0.

Let A(k) be the matrix such that A(k)E = —k x (k X E‘) + wj% (f] . ez) e,. Then, the previous
equality can be rewritten as the eigenvalue problem

[Ak) — 0*I3] E = 0.

More precisely, we want k € R, E € R? such that w? is an eigenvalue of A(k) associated to the

eigenvector E. This allows us to define the dispersion relation of the system:
F, (k) = det (A(k) — 0’13),

Then, we seek k € R3 such that F,(k) = 0, and, for such k, we determine the eigenspaces of
A(k) associated to w?. Notice that if F, (k) # 0, then E=o. By definition, F,(k) is a third order
polynomial in w?. Let us define the following vectors

y
k” = ky , and k, =\ k,
0 0

Lemma 3.1.5 ([6]). The dispersion function is written:

Ey() = (0 = 0, (k)?) (0 = o ()?) (0 — o) (k)?)

— (2 — 2) (2 — K2 (2 — 2 g2 (3.7)
(@ = wp) (& — k) (@ = Bl) "Ik > — k),

2
where o, (k)* = |k?, and o (k)* = %(a)f, + k[? + \JAG)) with A(k) = (@} + [k[?)” — 4kZe} < 0.
Then F,, vanishes if:
1. w,(k)? = ’ and the associated eigenspace is A | (k) := span (k", ez)J'.

2. a)”i(k)2 = w? and the associated eigenspaces are subset of Aj(k) = span (k", e,).
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3.1. Problem splitting

a)Hi(k 2 = w?

Ve
/

w (k) =w

wH:t: (k)Z — a)2

N,
N

w, (k)? = »?

T

w < W, W > W,
T T

Figure 3.1: Dispersion curves in the plane {ky = 0} with a)% =2 and w? = 1 on the left plot and
a)f, =2 and w? = 3 on the right plot.

Remark 3.1.6. The second item can be rewritten so that k and w are related through the following

quadratic equation:
LT
L x=_ (3.8)

w? — a)f) w?

Therefore, the associated curve is an ellipse if @ > w,, whereas the curve becomes a hyperbola if

w < wp, see figure 3.1.

Proof. See Appendix A.1. O

Let E € (6’ ! (]R3))3 be a solution of the system (3.6). If we consider its Fourier transform
E(k) := F[E] (k), then according to plane wave analysis, the solution sought has two components
E(k)=E (k) + EH(k). The support of E ' (k) is a subset of {w? = |k[?}, and we have in particular
kj-E, =0,e,-E; =0. On the other hand, the support of E(k) is a subset of the hyperbola defined
by equation (3.8), and k, - Ej = 0. Taking the inverse Fourier transform of E, (k) and E|(k), we
can split E = E, + Ej such that

OxEL x(x) + 0yE| ,(x) =0, E (x)=0, and 9E),(k)—9E (k) =0,

3
where the identities hold in (&’ (]R3)) .
This discussion justifies the separation of the system into two subsystems: a first part related

to E, and a second part related to Ej. Then, the next section is devoted to the splitting of vector
fields.

3.1.3 Anisotropic Helmholtz decomposition

To decompose the system (3.3) into two subsystems, we are going to base ourselves on a lemma
of anisotropic decomposition of the vector fields of R® in €2, taken from [6]. We introduce the

two following differential operators

curl, F := 0,F, — 9, F,, div, F = 0,Fy + 9,F),
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Chapter 3. Hyperbolic Maxwell problem in free space

and the following functional spaces

H(curl, 0;1R3) ={F € L? (]R3) tcurl, F= O}, (3.9)
H(div, 0;R%) := {F € L* (R®) : div, F = 0,F, = 0}. (3.10)

Lemma 3.1.7 (Anisotropic Helmholtz decomposition, [6]). The following decomposition holds :
L
L*(R*) = H(curl, 0;R*) @ H(div, 0;R%).

Proof. Let F € L? (JR3) and its Fourier transform F := % (F). For any k € R? such that k2 + k}z, %0,
we consider the following two orthogonal vector subspaces:

A||(k)={v€lR3 : v-kJ_=O}, Al(k)={v€]R3 : v-k||=0,v‘ez=0},

and the associated orthogonal projectors Pj(k) and P, (k). Then, it is natural to set I?'”(k) =
P||(k)ﬁ (k) and F (k) = P,(k)F(k). Since the set {k eR?: k.= ky = 0} is negligible with re-
spect to Lebesgue measure, and "PH (k)||oo =|P (k)| =1, I:‘"(k), F, (k) are functions of L (]R3).
Next, applying inverse Fourier transform, one obtains Fj,F, € L? (]RS) such that F = Fj + F,.
Moreover, due to the definition of Aj(k) and A, (k), we clearly have F; € H (curl 1 0; ]R3) and
F . eH (div 1 0; ]Rg), and this decomposition is unique because R* = Ay(k) ela A (k). Finally, the

two spaces are orthogonal thanks to the Plancherel identity:
(B FL) 2y = (FH’FJ—)LZ(IR3) = J']R3 Fy(k) - F, (k) dk = 0.
O

Given F = FH +F, € L2 (]R3), F" €eH (curl 1 0; ]R3) will be denoted as the longitudinal compo-
nent,and F, € H (div 1 0; IR3) the transverse component. Also, notice that F| and e, are orthogonal.
Then, in the view of Maxwell’s system, it is natural to split fields of H (curl; JR3). The following
lemma is about the regularity of the components of such vector fields.

Lemma 3.1.8. Let be F € H(curl; JR3). We have F,F, € H(curl; JR3). Moreover, curlF" €
H(div, 0; ]R3) and curl F| € H(curl, 0; ]R3).

Proof. We have by direct computation
(kxF)-(kxF)=|kf*F-F - (k-F)(k-F)=0.
Therefore, using Plancherel theorem, we have

2 5 ; Ar
leurl Flizgs) = ke FHLZ(R3) =[x Fj + ke x FlHL2(1R3)
2

= Hk x Fi L2(R?)

+Hkxﬁl

2 2 2
|HL2(IR3) = ||curlF” ||L2(]R3) + ”CurlFL“LZ(]R3) )

which shows that F,F, €eH (curl; ]R3). Next, we have

ki (kxF)=—kk, -F =0, e, (kxF) =k -F =0
ki (kxF.)= (ke +kk)-F =0,

so that k x 13‘" €A (k),kxF, € Ay(k) which concludes the proof. O

32



3.1. Problem splitting

The anisotropic Helmholtz decomposition allows decomposing vector fields of L? (]R3). In
particular, it makes possible to demonstrate the equivalence between the resolution of the system
(3.3) and the two subsystems resulting from the Helmholtz decomposition, in the case where
w € C\R.

However, in the case where w € R, this decomposition is not necessarily valid because, a
priori, the solution of (3.3) does not belong to L2(R%), but rather to a larger weighted L? space, see
e.g., [46, §2.6.5]. Thus, it would be desirable to find an anisotropic Helmholtz decomposition in a
more general space than L? (JR3). The key tool of the proof of the previous lemma is the Fourier
transform, which is an isomorphism of L2 (]R3). Since the Fourier transform is also an isomorphism
of &’ (JR3), it is natural to look for an extension of the decomposition for distributions which
belong to (S’ (JR3))3.

However, the decomposition is not valid for every distribution. Let us analyze which distribu-
tions are problematic. Consider for example the constant distribution e,. Obviously,

div, e, = curl, e, =0,

so that it has an infinite number of decomposition like in Lemma 3.1.7. Following the proof of

Lemma 3.1.7 with F = e,, we observe that the distributions P||13', P Lﬁ' do not have sense. Indeed,

given a test function ¢ € (& (]R3))3, we would have

<P||F, (p>(cS’(]R3))3 = <(27T)3/250ex, P”(p>(&(]R3))3 ,

which has no sense since (P“(p) (0) is not defined. Similarly, it is easy to see that polynomial
distributions ), jelx.y,2} pj(x)ej, where p; is a polynomial, can have several possible splitting as
longitudinal and transversal component, according to the terminology introduced above, and all
these distributions are singular at the point x = 0.

Then, it suffices to consider distributions for which the multiplication with the projectors P

and P, is valid. These observations lead us to define the following admissible class of distributions.

3 ~
Assumption 3.1.9. Given a distribution F € §”’ (1R3) , thereise > 0 and F,,, € Ll(Bg)3 such that

reg
L 5
F(F) = Frog in D'(B,)".
This assumption is sufficient to ensure the uniqueness of the decomposition, since it naturally

excludes polynomial distributions.

Lemma 3.1.10. Let be F € (S’ (]R3))3 satisfying assumption 3.1.9. Then thereis F |, Fj € (s’ (IR3))3
satisfying assumption 3.1.9 such that F = F| + Fj,div, F, =0, (F,), = 0 and curl, Fj = 0. Moreover,
Fj and F, are uniquely defined.

Proof. Thanks to the assumption 3.1.9, | (F}), P|% (F ) are well-defined, and so that Fj and F, . It
only remains to prove the uniqueness of the decomposition. Let Fj, F, satisfying assumption 3.1.9
be such that Fj + F, = 0. Therefore, we have #(F)) = | % (Fj) = —P|% (F|) = 0 which ends the
proof. d

Then, we will use the results of this section to decompose the electric and magnetic fields in

the next one.

Remark 3.1.11. Notice that the assumption (3.1.9) is not restrictive in our case. For example, when
w € R, a source term j in (3.3) will generally have a compact support, which implies that F(j)

are analytic and assumption 3.1.9 is obviously verified.
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Chapter 3. Hyperbolic Maxwell problem in free space

3.1.4 Reduced Maxwell problems

We will now apply the anisotropic Helmholtz decomposition to the system

1 0 O
iw E+curlB=j,
with =[0 1 of, (3.11)
—iwB + curl E = m,
00 B

for w € C\Rand j,m € L? (]R3) first, and then for € R\ {+®,,0} and E, B € (s7 (]R3))3.
For w € C\ R, according to Theorem 3.1.4, the solutions of this system are such that E, B €
H (curl; ]R3). Then, using Lemma 3.1.7, we split
E=E+E,, B=B+B,, m=m +m,, J=Jtijw
where
- E.,Bj€ H(curl; ]R3) n H(curlL 0; ]R3) and my, jj € H(curlL 0; ]R3),
« E|,B, € H(curl;R*) n H(div, 0;R*) and m, j, € H(div, 0;R?).

Notice that we also have Ej € H(curl, O;]Rg) and E, = E, € H(div, 0;]R3), as only affects
the third component. We also have that curl, F = curl, Fand div, F =div, F.

Therefore, using the fact that the spaces H (curl 1 0; ]R3) and H (div 1 0; ]R3) are in direct sum
and Lemma 3.1.8, the previous system naturally decomposes into the two following problems:
find E” € H(curl; ]R3) n H(Curll 0; R3),

B, € H(curl; ]R3) n H(diVJ_ 0; ]R3) such that (3.12)
io Ej +curl B = jj,

—ioB| + curl Ej =m,,

and
find E,| € H(curl; ]R3) n H(diVJ_ 0; JR3),
Bj € H(curl; ]R3) n H(curll 0; ]RS) such that

(3.13)
ioE| + curl B) = j,,

—ioB| + curl E, = my.
Notice that E, = E|, so that disappears in the second problem.

In the view of the plane wave analysis, the first problem (3.12) can be described as hyperbolic,
whereas the second problem as elliptic. Provided that w € C \ R, and in the view of Lemma 3.1.8,
solving the initial problem (3.3) is equivalent to solving both (3.12) and (3.13). On the other hand,
the two problems taken separately are also well-posed for w € C \ R: the well-posedness of (3.12)
is reminiscent of Theorem 3.1.4, and the well-posedness of (3.13) comes from the classic Maxwell’s
equations theory.

Moreover, the third component of B, and E, vanishes, so that they are orthogonal with the
background magnetic field By. Therefore, the system (3.12) (resp., (3.13)) can also be called as the
transverse magnetic problem or TM problem (resp., transverse electric problem or TE problem).

For w € R, as for the Helmholtz equation, the solutions are not expected to belong to L? (]R3)
but rather in a weighted L? space. The following proposition shows the equivalence between the

original system (3.11) and the split systems in the sense of the distribution.
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3.1. Problem splitting

Lemma 3.1.12. Let be ® € R\{-w),0,w,} and E, B, j,m € (87 (IR3))3 satisfying the system (3.11).
If j,m follow assumption 3.1.9, then there exist unique Ej, E,, B, B, such that E = E; + E,,
B=B+B, asin lemma 3.1.10, and

iw Ej+curl B, = j, iwE| +curl By = j,,

—ioB + curlEj =m,, —iwB| + curl E; =mj.

Notice that, given E,E,,B,B, solutions of the two systems above, we can always reconstruct

E = E +E, and B = B| + B, solutions of the original problem (3.2). Therefore, it is sufficient
3

that j,m € (8’ (R?))” satisfy Assumption 3.1.9, to have the equivalence between the system 3.11

and the two sub-systems.

Proof. The key point is that if j and m follow assumption 3.1.9, then E and B follow it too. We
have

curlcurlE — w? E = curlm + iwj,
curl ~'curlB— w’B = curl ~'j—iwm.
Taking the Fourier transform of the previous equations, E = F(E) (respectively B, j,m), we

obtain the two systems
AgE = ik x i + iw], AgB =ik x ~'j—iwm,

where ApE = —kx (k X E‘) —w? Eand AgB = —kx ~! <k X 1§) — w?B. The matrices Ag(k), Ag(k)
are smooth and there is ¢ > 0 such that there are invertible for every k € B,. Therefore, we have

in 2’(B,)*

E=AE_1(ieri1+iwj), B=AB_1(ik>< _1f—ia)ﬁ1).

Finally, as AE_l, AB_l are smooth in B, and m and f satisfy Assumption 3.1.9, then E and B also
satisfy this assumption. Applying lemma 3.1.10 concludes the proof. g

The two sub-problems defined above involve both the Sobolev space H (div, 0; ]R3), or at least
E |, B, have a vanishing third component. Therefore, in the two subsystems (3.12) and (3.13),
the number of unknowns involved is not 6 like the usual Maxwell’s equations, but only 5. This
justifies, in our case, the use of the term reduced.

Then, we will define below differential operators adapted to this reduced setting. The vector
fields with three components will be written with an italic bold font, the vector fields with two
components with a roman bold font and a tilde ~, and the scalar field with a medium weight
font. We introduce the following differential operators, provided F = (Fy, F), E)',F = (F, Fy)—r
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Chapter 3. Hyperbolic Maxwell problem in free space

and a scalar function f:

— d,F, — &,F, .
curl F = , curl, F = 0,F, — 9, F,, div, F = o Fx + 9,F),
azF x axF z
—9,F,
curl F = 9,F, , curl, F= IF), — 9yF,, div, F = 0, F, + yFy,
cF, — 9,Fy
oy f o.f
~ X.
curl) f =|-a.f]. vf:( ) A f=03f +35f.
0 %

Notice that the font of the differential operator has been chosen according to its output.

The usual curl-operator has the following relation curlcurl F = V div F — AF. Similarly, we
have numerous relations involving the operators above, and can be found in Appendix A.2. But
two noticeable identities are the following:

curlcurl, F = Vdiv, F— AF (3.14)
curl ~'eurl, F = 71 Vdiv, F - AgF, (3.15)

where A is the usual Laplacian operator on each coordinate of F, and A 5 is the following scaled

operator

Ap:= (0% +05) + 92 (3.16)

applied on each coordinate of F. Furthermore, the relations like div curl f = 0 are false in general
with the operators defined above, but the identity div curl; F = 0 still holds.

Remark 3.1.13. Given the usual curl-operator and = diag(1, 1, ), we have the following identity
for F = (F,, F), F,)":
dxdiv (B! F) — AgFy
curl ~'curlF =|9,div (B F)— AgF, |-
. divF — AF,

The anisotropic Helmholtz decomposition 3.1.7 then separates the first two components of the
third in the above identity. It results (3.15) and (3.14).

We have L? (R®) = L? (]R3)3 and L2 (R?) = L (]RS)Z. Then, the operators above induce the

following Sobolev spaces

H(curhR%) ={F e L?(R%) : curl F e L? (R%)}, (3.17)
H (curl;R%) = {15 elL? (R3) : curl, F e L? (le)}, (3.18)
H(div, 0;R%) := {F € L? (R®) : div, F = 0}. (3.19)

With these operators and spaces defined above, we can rewrite the subsystems (3.12) and (3.13).
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3.1. Problem splitting

The transverse electric subsystem becomes

findE, €H (curlL;]R3)) nH (div, O;]R3),

B e H ngﬂ;R3 n H(curl, 0;R3) such that
| € H(cur )~ (curl, 0;R?) (3.20)

iCL)EJ_ + CllrlBH = jJ_,

—iwB) + curl, EJ_ =m,

where m; € H (curl, 0; ]R3) andj, €H (div 1 0; ]R3). The corresponding one unknown equations

are
curl curl, E, — »’E, = curl my + iwj,, (3.21)
— ~ 3.21
curl; curl B) — w2B|| =curl, j, —iom.
The transverse magnetic subsystem becomes
find B € H(curl; R%) 0 H(curl, 0;R%),
B, cH (curly; ]R3)) nH (div, 0; ]R3) such that (3.22)

io Ej+ curl, BJ_ =Jj

—iwB + curl E =m,,

where jj € H (curl, 0;R*) and m, € H (div, 0;R*). The corresponding one unknown equations

are
curl; curl E - w? E = curl, m, + i ji» (3.23)

— . . — 3.23
curl “lcurl, B, — w’B, = curl _1j|| —icm | .

Now that the original system has been split into a reduced transverse electric problem, and a

reduced transverse magnetic problem, the two next section are devoted to their analysis.

Remark 3.1.14. The search for plane wave solutions E | (x) = E €8*and B (x) = B, e** leads to

define the following dispersion function

FIE(K) = det (ATE(k) - 01,),
FIM(k) = det (ATM(k) — 0?1,),

where ATE(k) = |k|°L, — kik|, A™(k) = (B k> +K2) T, — p Kk and k = (ky, k). The
eigenvalue-eigenvector pairs of ATE(k) are (|k|2, k l), withk, = (—k,, k)", and (kg k||), and the
eigenvalue-eigenvector pairs of ATM(k) are ( ﬁ_llk”|2 +k2,k, ) and (K2, k). Therefore,

Fo (k) = (kZ = ?) (K2 - ?),
FIM(k) = (k2 — o?) (B2 + K2 — 0?),

Then, the transverse electric problem (3.20) captures the elliptic part whereas the transverse
magnetic problem (3.22) captures the hyperbolic part of the solution of the initial problem (3.3).
On the other hand, we observe that considering the problem with 5 unknowns introduce the
term k? — w? in the dispersion relation, which was not present in the original problem, see
Lemma 3.1.5. In particular, this term will introduce unwanted terms in the fundamental solutions

of the sub-problems.
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Chapter 3. Hyperbolic Maxwell problem in free space

3.2 Transverse electric problem

This section is devoted to the study of the reduced transverse electric problem (3.20). Firstly, we
establish the existence of a solution by computing a fundamental solution. Then, its uniqueness

is discussed via the Silver-Miiller condition.

3.2.1 Existence of solutions

The principle of the computation of the fundamental solution is the same as for the usual Maxwell’s
system. However, contrary to usual Maxwell’s system, the reduced TE problem is not symmetric.

Therefore, the fundamental solution to the TE problem (3.20) is a pair of distributions (]E 1 ]B") €
S’ x 8 where §’ = 8’ (]R3)2X2 xS’ (1R3)2X3 and &' =&’ (]R3)3><2 xS’ (]R3)3X3 such that
l'(A)fEJ_ + (’:u\r/l]B” = iJ_’

. (3.24)
—iwB| + curll E, = my,

where j; = (S, 0x3), my = (03x2,13) and &, is the Dirac mass. The differential operators
must be taken column-wise.

Let us explain briefly the notation above by the following simple application. We decompose
E, = (BLE7) with B e 8" (R)", BT € 8 (R%)"”, and B = (B],B[") with B € 5" (R*)",

ﬁ” €s’ (]R3)3X3. Then, given the following source term j, € €;° (]R3)2 and my € 6" (]R3)3 for

the reduced TE problem, we can define the following solutions

i

m,

JL

) IE1*5L+ET*m”, and B| = B *<m|

~ J o3
EL:]EL*( )zIB"*JL+]B’|”*m|,
where = is the matrix convolution operator.

Recall the fundamental solution of the Helmholtz equation for w € C \ R:

eViolx|

 dnlx|’

G, (x) with y = signIm w. (3.25)

Proposition 3.2.1. Forw € C\R, the fundamental solution of the TE problem (3.24) is decomposed

into two parts

B, =B 4ETS B =B+ B
with
E® = (iw?w]IZ, Eu\/rl(?w]b)) , ]Brg = <curlL (&,L,), —iwg, s+ i Hess ?w>
i
and

BT = (i0V div, (%, 9PL), —Veurl, o, (%, » E°L;) )

sing

B)" = (curl, div, 9, (%, * G4°L,), —iwcurl, curl; E, « G1PL;),

iw]x|
where €1P = §y(x,y) ® €1P(z) and €1P(z) = —erA

2iw

y = signlm .

38



3.2. Transverse electric problem

Proof. In the view of identity (3.14) and of the first one-unknown equation (3.21),
_AEL+vdiVlIEL_w21El = EuT‘lmH +i@jl, (326)

the first step of the proof consists in the computation of div, E,. The application of identities
(A.9) and (A.8) to (3.24) gives

div, (curl By +iok, ) = -9, curl, By +iodiv, E, = div, j,,
curl, (curl E, - iwB|) = 9, div, E, —iwcurl, B| = curl; my.
Therefore, div, E, solves the following Helmholtz equation
—92div, E, —?div, E| = iwdiv, — 9, curl | my.

Notice that it is the 1D Helmholtz equation settled in R3. Therefore, for w € C \ R, the unique
distribution €1P € &’ (R?) solving —92 GAP — 0?8l = §5)(x) is €IP = 6y(x, y) ® ELP(z) where
?&D is the fundamental solution of the 1D Helmholtz equation, see Lemma A.3.1. Then, we have

diVJ_ ]EJ_ = &w * (l(/JleJ_ jJ_ — BZ CurlJ_ ]nl") = (lwleJ_ (@wHZ) s —az CurlJ_ (&IDH:;)) s

where * must be understood as the convolution of a scalar function with a matrix. Next, going
back to (3.26), E | solves a vector 3D Helmholtz equation. Then, given &, its fundamental solution,

we have that
]EL = gw* ((’:;im" +l(")jL _vdiVLf‘EL>
= (iw?wllz +ioVdiv, (f?w * ?L})D]IZ) , Errl(?wh) —Veurl, 9, (?w * ?(},D]h) ) .

Notice that the convolution product &, * @11) is well-defined in the sense of distribution. In-
deed, the mapping (x,y) = %,(x,y,-) belongs to L' (R%, L1(R)) and Z1P € L!(R), so that the
convolution & (x,y,") * @D exists for almost every (x,y) € RZ.

As for B|, we use (3.24) which yields

1 ~
B = o (Cur'lJ_ E, - 1m||)
= (curlL (%,1,) + curl, Vdiv, (?w * ?al)D]IZ) ,
L curl, curl (€,1;) — —81; — — curl, ¥ curl, 2, (%, » @})Dm)) .
iw iw iw ——

Notice that curl, V f = —9,curl, f Using the last identity and (A.4), the fact &, and ?;03 are
the fundamental solutions of the 3D and 1D Helmholtz equation in R®, we have the following

expressions
— : 1D
By = (curlL (%¢,1,) — curl, div, 0, (?w * G, ]Iz) ,
—iwG, I3 + l Hess &, — i curl, curl| (?w]h — 2%, * ?(})D]I3)> .
iw i© —
- (curll (G,1y) + curl div, 3, (%, + APL,),

—iwG, I3 + l Hess &, —iwcurl, curl| G, * ?,})D]I3> .
i ——
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Chapter 3. Hyperbolic Maxwell problem in free space

Remark 3.2.2. With the Fourier transform, we have that €, (k) = (|k|> — ©*)~! and F€P(k) =
(k2 — ?)7!. Then, we have

1
(Ik[? — 0?)(k2 — w?)

F|G., = GaP| (k) = F G, (k) x FELP(k) =

Therefore, the separation of the fundamental solution into regular and singular parts is justified
by the remark 3.1.14.

As in the classic fundamental solution of the Maxwell’s equation, the Hessian of &, appears
in IBrg. Therefore, although the convolution Hess &, * m| may be well-defined in the sense of
the distributions, it may not represent a function. To address this issue, we make an additional

assumption on the regularity of m.

Proposition 3.2.3. Forw € C\R, givenm, € H(curll 0; ]R3) n H(div; ]R3), L €H (divL O;]RS),
the unique solution of the TE problem (3.20) is

B E, (J) i« (i0f, + curim).
m,

B| = ]Brg o) = G (curly j, —iomy) + ;V?M « div my.
m" 1w

Proof. 1t is easy to check that Iéiing * (3o, mH)T and I~Bﬁing * (jis m||)T vanish under the above
constraints on my and j.. For example,
Vdiv, (9, GAPL) « j, = (9, « GiP) « Vdiv, j, =
Vi w* Yy L2)* )L = w* Y0 *VdIVJ_JJ__O‘
The regularity comes from the fact that &,,9,%,, € L! (]R3) for i € {x, y,z}, and that the source

terms are square-integrable. O

Remark 3.2.4. The complete fundamental solution to the usual Maxwell’s equations can be written
3x3
in a similar manner as E = (E,B) and B = (B, —E), where E,B € &’ (]R3) with

E =iwg I; — l Hess @, B =curl,I;.
iw
Then, given j, and m as in Proposition 3.2.3, one can verify that the convolutions of E, B with

the source terms coincide with the expressions given in Proposition 3.2.3.

Let us now prove the existence of solution for w € R\ {:I:a)p, 0}. First, recall the definition of

the outgoing fundamental solution.

etw\x\

Lemma 3.2.5. For all € R\ {0}, we havelim,_,o, €., = € in Mfl}),cl (R?) where G} (x) = pperel
This allows us to state the following existence theorem.
. . . 3 2 (R3))°
Theorem 3.2.6 (Existence of classic solutions). Letw € R\ {0}, my € H(curlL 0;R ) n (%”0 (IR )) ,
andj, €H (div, 0; ]RS) n (%02 (1R3))2. Then,

Ef =%} « (iwjl + a;lm"), Bﬁr =G« (curl, jL— ia)mH) + i)v%f * divmy.

are such that ET € (%”1 (IRB))Z, Bir € (‘61 (]RS))S, and satisfy (3.20) in a strong sense.
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3.3. Transverse magnetic problem

3.2.2 Silver-Miiller condition

Classically, in the case of unbounded problems, the uniqueness is ensured by a radiation condition,
e.g., the Sommerfeld condition for the Helmholtz problem, or the Silver-Miiller condition for the
harmonic Maxwell’s problem. In fact, without the radiation condition, it is easy to construct
infinitely many solutions of the TE problem (3.20) by considering convex combination of (]:ZI BD
given in Theorem 3.2.6 and

E] =9, « (ia)jj_ + ;ﬂm||), B/ = G, * (curly jL— iwm”) + iv‘gg * divmy,

where & = lim,_,¢, ,_;, and &,,_;, given by (3.25). With a normalized speed of light ¢ = 1,
recall that the weak form of the usual Silver-Miiller conditions reads

J IE — Bxn|*ds — 0, (3.27)
Sg R—+00
J |B + E x n|2 ds —— 0, (3.28)
Sk R—+o00

where Sy is the sphere of radius R, refer to [24, §6.2, 17, §1.2] for details. These two conditions

are equivalent and both select the outgoing solution. Then, according to the Remark 3.2.4, the
- T

outgoing solution (Eir Bir) satisfies the conditions above, where Ef = (EI 0) .

Theorem 3.2.7. Let @ € R\ {0} and (E,, B)) € (¢! (1R3))2 x (€1 (JR3))3 be a solution of the
homogeneous reduced TE problem (3.20). If(EL B”) satisfies either (3.27) or (3.28), then it vanishes.

3.3 Transverse magnetic problem

This section is devoted to the study of the reduced transverse magnetic problem (3.22). Because
this problem is less “classic” than the previous one, we first study its scalar counterpart, which
has the same importance for the reduced TM problem as the Helmholtz equation for the usual
Maxwell’s problem. Then, we study the existence and uniqueness of the solution for the TM

problem.

3.3.1 Associated scalar equation

The scaled operator appears naturally if we use the identity (3.15) with the one unknown equa-
tion (3.23) involving B . The resolution reduced TM problem is clearly linked to the resolution of

the scaled Helmholtz equation:

find u such that 6012;
with f(w) =1 - —- (3.29)
—Blw)™? (8,2( + 8}2,) u—u—cw*u=f, inP’ (JR3), w

The spaces to which u and fbelong will be specified later. Obviously, f(w) > 0 for w € (@, +0)
and f(w) < 0 for w € (0, @,). Therefore, the equation is elliptic for w € (), +00) and is hyperbolic
for w € (0,wp,). We are interested in the latter case.

Let us make some opening remarks on this equation. The existence of a distribution & €
s’ (]Rg) which solves the equation above with a Dirac mass as a source term has already been

treated in the classic literature, see e.g., [34, Theorem 6.2.3, p. 141]. However, the above equation
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Chapter 3. Hyperbolic Maxwell problem in free space

is mostly encountered in the study of wave equations in time regime, i.e., when f < 0 does not
depend on w, and the variable z is replaced by ¢ € R:

-p! (6,2( + 85,) u—u—w*u= f(x,y,1).

In this case, having causal solutions is natural and desirable. This implies that the support of a

solution u should be a subset of the cone
. {(x, y,t) : |[3|_1/2t > (x% + y2)1/2} for a forward solution, i.e., vanishing for t < 0,
. {(x, y,t) : |[3|_1/2t < —(x*+ yz)l/z} for a backward solution, i.e., vanishing for t > 0.

In both cases, a solution should vanish on the “non-causal” cone
[y 18721 < 2+ )17,

In our case, the “causality” is a priori not required in the sense that the support of the

fundamental solution of (3.29) is not necessarily a subset of the cones
{3, 2) € R« [2] > [B(w)/2(x® + y)/2}.

As a matter of fact, we seek the solution u to be the limiting absorption solution of u,,,;, when
v > 0 goes to 0.
Finally, we denote the equation (3.29) as the scaled Helmholtz equation even if f(w) may be

negative. This equation must be distinguished with the usual scaled Helmholtz equation
—p 1 (2 + ) u—Pu—-o'u=f, (3.30)

with f > 0. Some results on the usual scaled Helmholtz equation can be found in Appendix A.3.

This problem has been extensively studied in the 2D case in [22] for (0, wp). Therefore, the
analysis presented in this section follows the same steps: the problem with absorption is studied
first. Then, an existence theorem via the computation of a fundamental solution is stated. Finally,
the section is concluded by a uniqueness condition

3.3.1.1 Problem with absorption

First consider the following problem, with Im w # 0:

find u, € H'(Q) such that

(3.31)
—B(w)™? (8,2( + 832,) u, — 02u, — w’u, = f,

where f € L2(Q). Then, we have the following well-posedness result.

Proposition 3.3.1. Given w € C \R, the problem (3.31) is well-posed for all f € L*(Q), and there is

C(w) > 0 such that
|l
[l rsy < ) IAz2qre) -
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3.3. Transverse magnetic problem

Proof. Notice that we can express the equation of the problem (3.31) in the divergence equation

—div (B(w) ™ Vu) - wtu = f, = (((1; E ﬁé})) . (3.32)

Then, the problem (3.31) is equivalent to

Find u, € H!(Q) such that
ay(ty, v) = t(v), for all v e HY(Q),

where

a,(u,v) = JR3 (ﬂ_l Vu-Vv— wzuTi) dx, and t(v) = J’1R3 fvdx.

Obviously, a,, and € are continuous with respect to the H' (]R3)-norm. A quick computation yields
that Im (@ﬁ(w)_l) and Im @ have the same sign. Therefore, we have for u € H' (]R3)

Im a, (u, o) = Im (@f(w) 1) (||axu||§2(m3) + oy, GRS)) + (@) [,122 gy + @)ool 2y -
Consequently, there is a constant C(w) > 0 such that for all u € H? (]R3)
[m a,, (u, 0w)| > C() lulfy rs) -
The Lax-Milgram theorem allows us to conclude about the well-posedness. O

A flaw in previous proposition is that it cannot be applied for w € R. Indeed, the constant
C(w) goes to zero when w approaches the real axis. Therefore, in order to show the existence of a
limiting absorption solution, another characterization of the solution is needed. In this view, the

following proposition gives the fundamental solution ?f € 8’ (R?) of the problem:

—P() (92 + 03) u — 92u — wPu = &, (3.33)

for w € C\ R. From this point forward, we employ the principal determination of the complex
square root, with the branch cut along (—o0, 0]. Notice that Re y/z > 0 for all z € C \ (=0, 0].

Proposition 3.3.2. The unique solution of (3.33) forw € C\R is

exp (yiw\/ﬂ(w)(xz +y9) + zz)

B
?&) s Vo =
(oy.2) = flo) 4ﬂ\/ﬁ(w)(x2 + %) + 22

y = sign(Im ). (3.34)

Moreover, we have ?fj el! (]RS).

This fundamental solution must be compared with the fundamental solution of the scaled
Helmholtz equation (3.30), see Lemma A.3.3. However, the main difference is that f(w) is not real
in general so that Lemma A.3.3 cannot be applied directly. Therefore, the proof below develops a
stronger argument using the analyticity of the problem.

Remark 3.3.3. The existence of two different fundamental solutions would contradict Proposi-
tion 3.3.1. Indeed, given f € L? (]R3), ?f % fis the solution of (3.31).
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Chapter 3. Hyperbolic Maxwell problem in free space

Before starting the proof, let us fix the convention used with the Fourier transform. Recall

that the unitary Fourier transform in R? is given by
Flul(k) = — J u(x)e k*dx.
(2m)*/? Je

Still, in the view of the scaled Helmholtz equation 3.31, it is appropriate to consider the partial

unitary Fourier transform along the x, y-directions:
Frylullky, k), 2) = 1 J u(x, y, z)e_i(XkX+y ky)dxdy.
27 JR2

Proof of proposition 3.3.2. The proof follows [22], and is separated in two steps. The first step
consists in showing that there is a unique fundamental solution &, for all ® € C \ R and that the
mapping o + ‘Ef is analytic on C \ R. Next, we compute an explicit expression for ?g on an
appropriate subset of C \ R. The analytic continuation theorem will allow us to conclude since
this expression will also be analytic on C \ R.

First, we apply the partial Fourier transform to (3.33) along the x, y-directions, which results

in a 1D Helmholtz equation:
02 F ey — (0 = B) kol + o)) Foe G = 8y(2)

Let

0ok ky) = [B() ! (k2 +k2) — 2.
It is defined unambiguously for ky, ky, © such that Blw)™! (k,zc + ka,) — w? € C\ (=,0). A quick

computation gives
2

1)
Im ([3(0))_1) = —Im(wz)—p

a2~ ap
so that
|k|||2w2 |ku|2a)2
Im (B(w)™ ! (K2 + K2) — w?) = — Im(w? 1+—p = —2Re(w) Im(w 1+—p ,
(B (K +K5) - o) Sl v @) | 1+5 5

where |k‘||2 =k + ka,. Notice that the last expression vanishes only if w € R uiR. Of course,
we exclude the case » € R, and for w € iR \ {0}, we have f(w)~! € (0,+), and similarly for
Blw)™! (k,zc + ka,) — w?. Therefore, o,, is well-defined for all @ € C \ R and (k,, ky) € R?, and the
1D Helmholtz equation becomes
~RF G — (0, Fo ) Th = 8(2).

By definition of the complex square root, Im(io,) = Reo, > 0. Therefore, according to
lemma A.3.1, we have forall w € C\ R

o ﬁ e_o—w(kx’ky)|z| 3

*/'x,y a)(kx; ky, Z) = m, V(kx, ky, Z) € R . (335)
On one hand, the mapping (ky, k) — o,(ky, k,) cannot vanish for © € C\ R. On the other
hand, |o,,(ky. k)| 2 (kZ + k2)'/2 and Re o, (ky. k) = (k2 + k2)V/2 for large (k% + k2)/2. Thus,
(ky ky) o> Fy Gk Ky 2) € L' (R) for all z € R and

—o,(kok)lzl
5 g J e PRk ki y)
Gu(x,v,2) = ) dxdy. 3.36
w(x y Z) (2”)2 ]RZ ch(kx, ky)e X y ( )
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3.3. Transverse magnetic problem

The mapping o > 0,,(ky, k;) is analytic on C \ R. Therefore, classic integration theorems (see,
e.g., [57, Theorem 1.7, p. 308]) imply that w — ?a/f(x, y,2) is analytic on C \ R for almost every
(x,y,2) € R3.

Next, we remark that f(w) € (0, +o0) for w € iR. As a consequence, applying Lemma A.3.3 to
any o € iR with f = (o) yields

8 exp (yiw\//)’(a))(xz +y?) + 22)
Go(x,y,2) = p(w) , y = sign(Im w).
4 B(w)(x% + y?) + 22
Due to the analyticity of the mapping w + f(w) on C\ {0} and the fact that f(w) € (—o0,0] only if
» € R, the mapping of w to the latter expression is also analytic on C \ R for all (x, y, z) € R\ {0}.

The proof is concluded, as announced, with the application of the analytic continuation theorem.

Finally, given w € C \ R, one may check that ?L{f decreases exponentially at infinity. Indeed,

— 2 2 2
oo - (@) exp (—yIm (o (@)(x® +7) + 2 ))’ (i

4| lw)(x? + y?) + 22|1/2

and one may check that yIm (a)\/ Bl@)(x? + y?) + zz) is positive and tends to infinity as |x| in-
creases. On the other hand, it is also easy to check that ?(f € Llloc(Bl(O)) with the spherical
coordinates. The two previous arguments yields ‘Ef erL! (]R3). O

Remark 3.3.4. The same kind of argument can be applied for the complex scaled Helmholtz
equation, by first showing that g — ?ff is analytic via the integral representation, and then by

continuing analytically (A.13).

As a direct consequence of the proposition, the convolution of fﬁ with any L? (JR3)—function
is valid. Therefore, the unique solution exhibited in Proposition 3.3.1 can be represented as the

following lemma.

Corollary 3.3.5. Given € C\R and f € L? (R?), the unique solution of (3.31) is u,, = ?ff * f.

3.3.1.2 Limiting absorption solution

Now that the fundamental solution of (3.33) is known for w € C \ R, the following proposition
describes the behavior of ‘ff when Im o tends to 0. Due to the branch cut of the square root, the
signs of Re w and Im w play an important role. For this reason, we restrict ourselves to the case
Rew > 0. Let us define for all x = (x, y,z) € R®

2|1/2 .

dp(x) = ‘IB(a))(x2 +y)+z (3.37)

Remark 3.3.6. This function must be compared to the “elliptic” distance \[|f|(x% + y2) + 22 to
the origin which is equivalent to the euclidean distance ; we use the term “elliptic” because the
level set are ellipse. Obviously, dﬂ is not a distance. Nevertheless, it can be viewed as it in the
hyperbolic system of coordinates ; notice that the level sets of dg are hyperbola. Recall that the
hyperbolic system of coordinates writes

inh 0
X2+ 2 = ,0|;1|111/2 , z = pcoshf
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Chapter 3. Hyperbolic Maxwell problem in free space

with p > 0 and 0 € (0, +o0), so that d/;(x) = p. However, major difficulties appear with the
“hyperbolic” distance. Indeed, the hyperbolic system of coordinates is bijective from the cone
{z > {IBI(x% + yz)} to R™ x R?. In particular, the “hyperbolic” distance vanishes on the boundaries
of the cone and not only at the origin of the system of coordinates.

Proposition 3.3.7. Let w € (0, +00) \ {w,}. Then,
B .
Ghax) = lim G).,(x)

exists for almost every x € R3. Moreover, the convergence holds in Llloc (]R3) and there is the two

following cases:

o ifo> wp, then

8 _ e:l:ia)dﬁ(x)
a0 = BT,
. ifw € (0,wp), then
gHodf®) i 3. .2 2, .2
Bw) and ) ifx € Cp={(x.y.2) € R® : 2% > |f(w)|(x* + y*)},
?f,i(x) = e—wgﬁ(x) ; (3.38)
iﬂ(w)m ifxeCp = {(x, y,2) €R3 @ 22 < |B(w)|(x? + yz)}.

Before proving this proposition, let us make some remarks. It is clear that the appearance of
different cases is due to the presence of the complex square root. In the first case, © > w,, and
B(w) > 0, so that we retrieve the classic outgoing (respectively, ingoing) fundamental solution
?ff + (resp. ?(f —) of the scaled Helmholtz solution. In the second case, we observe first that the
solutions are not “causal” since they obviously do not vanish in the “non-causal” cone Ceﬂ . The
outgoing and ingoing solutions decrease exponentially in Cf (where “¢” stands for evanescent) as

L)

dp(x) increases, while a propagative behavior is observed in Cg (where “p” stands for propagative),

see Figure 3.2.

Proof. Until the end of the proof, we use p = /x? + y% and dfj"(x) = JBlw £ iv)p? + 22 for
@ € (0,+00) \ {w,} and v > 0. The proof is divided in three parts. First, the pointwise limit

is computed. Next, we prove that ?f + € Llloc (R?). Finally, the convergence in Llloc (R3) is
established.

Step 1: pointwise limit. If f(w)p? + z° > 0, then
+v,
dﬁ (x) = dp(x).
This occurs when @ > @), or w € (0,w)) and x € Cg. Next if f(w)p? + 2% < 0, i.e., w € (0, wp) and
x € Ceﬂ , then the limit depends on the sign of
2p2a>12,a)v

: 2 2\ —
Im (B(w + v)p? +2%) = :l:(w2 T

(3.39)
Then, using the definition of the complex square root,

£V .
dﬁ (x) o +idg(x).

The incorporation of the above limits in (3.34) gives the pointwise limit almost everywhere.
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3.3. Transverse magnetic problem
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Figure 3.2: The real part (on the left) and the imaginary part (on the right) of the fundamental
solution &, ; in the plane {y = 0}. The abscissa corresponds to the variable x and the ordinate
to the variable z. We have chosen @ = 4 and v, = 44/2, such that § = —1. Notice that the

B N S e O e

fundamental solution is propagative in the upper and lower cones Cg , and is evanescent in the

f

rest of the domain C,. Moreover, because the fundamental solution is singular, the colors near
the boundaries of Cg and Ceﬁ become saturated.

Step 2 : ?ff + € Lloc (]R3) Next, the end of proof focuses on the case w € (0,w,), where

B(w) = 1— -4 < 0, since the case w > wp is analogous to the scaled Helmholtz equation. Let
R > 0and the cylinder B = {(x,y,z), max (|z|, |/3|1/2 ) < R}. We define K, g = Cg n Bg and
Ker= Cf n Bg, see Figure 3.3. Then, we have

J~ |?£i(x)‘ |/3| L__ lel/lﬁll/ |ﬁ|p :R?Z,

and

R/IBI? 2
J \?ffi()\duﬂj & _p |I J PP 4= TR
nl ko dg P ﬁ|p VTR

This shows that ?{f 4 € Llloc (]R3).

Step 3 : convergence in Llloc (R®). We focus on the proof for ?fj + since the proofs for ?{f "

and ?f — are identical. It suffices to show the convergence on K, g and K, g for any R > 0. First,
forall x € Kp,R’ we have

w+lv(x) (go/j +(x)

() (l@dp(x)
=flo+i e R pr ey
~ Blo+in) B ( 11 ) PGk in)e D — pe)e
an dg(x)  dp(x) adg(x) ‘
(A) b 5

The term denoted as (B) is easily bounded by 1/dg(x) € Llloc (]R3), because the denominator is
uniformly bounded on K, g. In the same way, the term in front of (A) is also uniformly bounded
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Chapter 3. Hyperbolic Maxwell problem in free space

on K, p. Therefore, it remains to show that

1 1 LR
d};(x) d/g(x) v—>0+

An easy computation shows that

1 1 1 1 I U 1 (3.40)

_ — 1=
dlvg(x) dﬂ(x) dﬁ(x) Blow+iv)p?+22 dﬂ(x) \/ (Blw+iv)—B(w)) p?
Blw)p?+2z2 Bw)p?+2?

Again, 1/dg(x) € Lllo . (]R3), so it suffices to bound the last part in L*-norm uniformly with respect

to v small enough. However, it is not obvious because f(w)p? + z2 goes to 0 near the boundary of
Cg , so that the ratio

(B(w +iv) = f(w)p?

Blw)p? + 22
is not uniformly bounded. As a consequence, following the approach in [22 Appendlx D], we
shall decompose K, K;e}‘% "y K;";Qg " with the definitions of K, 5 bR and K, R " provided below.
Since s € C\ (—o0,—1] > 1 — ﬁ is analytic in a neighborhood of 0, there are two positive
constants C;, C, such that
Is| < C; = ‘1 - ‘ < Gylsl. (3.41)
s

In the same way, for v > 0 small enough, there is Cg > 0 such that [f( + iv) — f(®)| < Cgv. Then
consider the following sets

Cgv
Kok = {(x, y.2) R : (IﬁI + C—ﬁ> p?<z* < R}, (3.42)
1
. Blp* < 2 <R
K;l’rllzg’v = (x, v, Z) (S ]R3 : Cﬁv ) , (343)
2 < (|,B| + C_> p
1

see Figure 3.3. Notice that the set K R’ is designed in a such way that, for all x € K, R’ and for
v > 0 small enough,
(Blw + iv) = p(w))p?
Plw)p? + 22

< (cp) ( G ) Cy. (3.44)

Cpv
Moreover, as v goes to 0, 1 K converges almost everywhere to 1 Kpr . Then, for any x € K;eﬁ v,
the combination of (3.40), (3. 41) and (3.44) gives

GG
- dﬁ(x)

11
dix)  dyl(x)

As a consequence, since the last inequality stands for v > 0 small enough and (?Lf iy~ ?£+) Lgregy

P,
converges to 0 almost everywhere, then by Lebesgue’s dominated convergence theorem, we have
that

B L' (KyR) B
Gorrilgregr —— = Yot (3.45)

48



3.3. Transverse magnetic problem

2 = g
PI™"p Z o= B
——- z=R =R
p

I e e
[ Kpr [ Ker

Figure 3.3: The domains Cg, Cf, Kp,R, K, g on the left and K

Kk L1 K

reg,v ,,singv
r-K

HRon the right.

The final step consists in demonstrating that ?c’f +iv Ksmgl converges to 0 in L!-norm. Using (3.39),

we have
‘dvl . 1 - 1
(%) IIm (B(w + iv)p? + 22)| p\ﬁ/
On the other hand, thanks to the definition (3.43) of Ks";zg’v, it follows that p = ﬁ\(f) for all
xeK, sm‘g . This leads to the inequality
1
J| iV 1 smgv < J dﬂ 1 ;H;ng m) 0. (346)

Finally, (3.45) and (3.46) ensures that ?f iy converges to ?f 4+ in Ll(Kp’ r)- A similar argument
gives the same conclusion in Ll(Ke, r)> and the proof is concluded. O

Let us conclude on the fundamental solution by the following lemma.

3
Lemma 3.3.8. Forw € (0, a)p), we have V?fii € Llloc (Cg U Cf) , and

-1
(iiw ! )?ffi( )ﬁ(a)) x’ ifxEC’B,

d d
VGl (%) = 1/3( x) o ( ) ﬁ (3.47)
(“_W) S d() o Uxes

On the other hand, V?ﬁi ¢ Llloc (]R3)3.

3
Proof. The computation of the gradient is obvious, and clearly shows that V?ﬁ LE€L), (Cﬁ U Ceﬁ ) .
On the other hand, the computation of the L!-norm on K, g like in the second step of the proof
of Proposition 3.3.7 leads to estimate the integral
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Chapter 3. Hyperbolic Maxwell problem in free space

Now that we have a suitable fundamental solution for w € (0, wp), let us state the following
results about the existence of strong and weak solutions. Since the proofs follows exactly [22],
we only transpose the result in the 3D case.

Proposition 3.3.9. Let w € (0,w,), and f € G¢ (R%). Then, uf; = ?£+ *fe®?(R®) andisa
strong solution of (3.29).

This result can be extended by density to functions in some weighted Sobolev spaces. Let us
define the following spaces with their norms:

I3 (R*):={ueL? (R*): |ul,_ < oo}
3
Hl1,+ (]RS) = {u € leoc (le) s Vu e (leoc (]Rg)) ? ”u”Hiﬁ_ < oo},

2 2 2 2 2 2y 1
u = ul“(1 + z%)dx, u = ul® + |Vu dx.
it = [ WP iy = [l )

Notice that Li_ (1R3) =12 (R; L? (le)) where L2, is the Lebesgue space weighted by w(x) = 1+22.
Then, we have the following result.

Proposition 3.3.10. Given f € Li_ (]R3), the function u}, = ?gf L *xfe€ HLJr (JRS) is well-defined.
Moreover, u); solves the problem (3.29).

The optimal result can be found in [22]. The main idea of the proof consist in expressing
the norms involved with the partial Fourier transform along x, y-directions via the Plancherel

Theorem:

2
off - = [ | lulh b 2 1+ 2k
luly = JIRS (141 + 1) [yl k2 + [0yl Ry 2 ) 5 ey
Then, defining %, , [?g +] as the limit of (3.35) when Im «w — 0+, we have

Feylud] = 9x,y[$f,+] w2 Fey L],

and the estimation of u; with the norms as above is easy.

3.3.1.3 Radiation condition

Fourier’s radiation condition It has been seen in § 3.3.1.1 that the application of the partial

Fourier transform in the x, y-directions leads to the following 1D Helmholtz equation:

—8§%x,y[u] - (w2 - ,B(w)_1|k|||2) Frylul = F )l f], ae k| = (kg k) € R%. (3.48)

Recall that () < 0 for w € (0,w)). Given k| € R?, if gx,y[u] satisfies the following outgoing

radiation condition

a|Z|J’X \/w - p(w)~ 1|k|||2 [ | —— 0, a.e. k" € R? (3.49)

|z]>+00

then the solution &, ,[u] of (3.48) is unique. On the other hand, the %, ,[u] must exist if we
want a such condition. Then, a sufficient condition to guarantee this consists in imposing some

regularity on the following mapping:

[(x, y) € R? - u(x, y, z)] €L? (le), ae z€R (3.50)
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3.3. Transverse magnetic problem

Definition 3.3.11 (Outgoing Fourier Sommerfeld condition, [22] ). A function u € Hlf)c (]R3)
satisfies the outgoing Fourier radiation condition if it satisfies (3.49) and (3.50).

Let us make few comments on this condition. Although ?ff +(,+2) € L? (R?) because of it
singular behavior near the boundary of the cones Cg and Ceﬂ , it is compatible with the radiation

condition. Using (3.35) and letting Im o tend to 0+, its partial Fourier transform in & (R?) reads

i\Jor—p)kE+kD) 2]

Fry|Za] Gy 2) = -

20 Ji? — pl)E + KB)

Hence, it trivially” satisfies (3.49). Together with Proposition 3.3.10, this leads to the following

theorem.

Theorem 3.3.12. Let w € (0,w,). Forall f € L3 _ (R®), the function uf; = ?£’+ « f e H , (R?)
is the unique solution of the problem (3.29) which satisfies the Outgoing Fourier Sommerfeld condi-
tion (3.3.11).

Towards an alternative radiation condition The usual radiation condition (in a strong form)

for the Helmholtz equation is reads
rlou — iowul —— 0
r——+00

where r = |x|. This condition ensures the uniqueness of the solution, via the Rellich’s Lemma,
see e.g., [45, Lemma 9.8]. Obviously, the fundamental solution (A.12) of the classic Helmholtz
equation also respects the condition above.

The objective of this paragraph is to give some ideas on how to construct a such radiation
condition for the hyperbolic equation (3.29). More precisely, we want to design a condition with

the following pattern:
R(x) [t(x)Vu(x) - n(x) — iwg(x)u(x)| —>+ 0
r—+00

where t(x) is a 3 x 3 matrix, n(x) the normal to some surface, and R(x), g(x) are two functions.
For example, in the case of the classic Helmholtz equation, we would have t = I3 and n(x) = x/|x|,
and g(x) = 1. This condition is expected to be compatible with the fundamental solution (3.38).

Indeed, we can rewrite its derivative as

-1
%C, 1fx € Cﬁ,
x
vl .0 =-%f, ﬂxzimfﬁi(x)x g
dp(x) Blw) "x p
Fi———, ifxeC.
dp(x)

Therefore, in the view of this expression, if we want to select the outgoing solution, it seems

natural to set

x n(x) if xECﬁ

) oo dg(x) ° ’
tx)=4" =( 0 p'0])s and  g(x)=

001 LEE) et

dﬁ(x) 3 bl

2Actually 9, F, , [h.] = iJJo? = ) T PF,, [0, ].
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Chapter 3. Hyperbolic Maxwell problem in free space

with dp(x) = 2% — |/3|p2|1/2, p =/x% + y?, so that a simple computation gives

x - n(x)

dg(x)?

B VEL(x) n(x) - i0g(x)Eh,.(x) = ~Fh . (x)

Then, given a direction e € R3, le| = 1, not parallel to the boundary of the cones Cj‘[j, Ceﬁ , we
obviously have

1

|x||B w.+(xle) - n(lxle) —iwg(lxle), 1 (Ixle)| < 4r|x|dp(e)® |xl>-+eo

(3.51)

On the other hand, this conditions is not satisfied by ?ff —
The Rellich’s lemma ensures the uniqueness of the Helmholtz via the control of the limit of

lulz2(s,) as R — +oo where Sg is the sphere of radius R. Unfortunately, the quantity ” ?(f +

1)
not defined since ?f + is not L?-integrable on the sphere, for the exact same reason as Vfﬁf’ 1+ €
Llloc (1R3)3, see Lemma 3.3.8. Therefore, instead of a simple L2-norm on the sphere Sg, we will
consider a weighted L2-norm on the boundary 9Q of some bounded domain Q ¢ R>.

Let u € €% (R®) be a solution of the equation (3.29) with f = 0 and W(x) a measurable real
weight function. Then, using the divergence form (3.32) of the equation, we have

0=—-Im J div (/3_1 Vu) uW(x)dx
Q
= ImJ B! Vu- VW (x)dx — ImJ af™! Vu-n(x) W(x)ds(x).
Q 2Q

Notice the appearance of Im (#f~! Vu) which must be compared with the vector Im (#Vu). There-
fore, following the idea of dominating the weighted L?-norm on 99, the Cauchy-Schwarz inequal-

ity leads to
o j 4 g ()W (x)ds(x)
20Q

< ‘ImJ ﬂ(ﬁ_l Vu - n(x) — iog(x)u) W(x)ds(x) — Imj af~! Vu- VW(x)dx’
Q Q

1/2 12
< (LQ |u|2|g(x)|W(x)ds(x)> (LQ g~ Vu-n(x)—ia)(gr(x)u|2 E/((xxjds(x)>

+ UQ upt Vu- VW(x)dx‘ .

e
||

determine, and Q = K, g u K, g. Notice that Wis defined such that it only depends on x/|x|. Then,

following computations like in the second step of the proof of Proposition 3.3.7, and focusing

U
In order to have an idea of the weight, let us set W(x) = ( ) with p € R some exponent to

only on the problematic terms, we have

2 _
| Jlf lscomw s = [ () s <o
_ . 2 W(x) -5
LQ ’,B 1 V?ﬁ+ -n(x) — lwg(x)?£+ |g(—;)|ds(x) = J.aQ (dﬂ(x))ll ds(x) < o

if yu > 1 for the first integral and p > 3 for the second.
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3.3. Transverse magnetic problem

To end this paragraph, the ideas above are premises to write a condition radiation without the
use of the partial Fourier transform. However, it was not possible to develop further these ideas
because two quantities must be estimated for a regular non-vanishing solution u of the equation

with a vanishing source term:
« the volume integral [ #f ™" Vu- VW (x)dx;
« the growth of the surface integral IaQ |u?| g(x)|W (x)ds(x).

In principle, once the behavior of both these integrals is known, a proof of the uniqueness of the

solution following the same steps as the classic Helmholtz equation could be written.

The two next sections are devoted to the derivation of the well-posedness result for the
reduced TM problem (3.22). The strategy is the same as the TE problem : we first establish the

existence of classic solutions, then a radiation condition is discussed.

3.3.2 Existence of solutions

The fundamental solution of the hyperbolic problem (3.12) cannot be computed like int eh case of
the Maxwell system in vacuum because of the presence of the tensor . On the other hand, in
spite of its complexity due to the high number of differential operator, the reduced formalism
introduced in section 3.1.4 allows us to compute the solution. We look for a pair of distributions
(E”,]BL) €S8 x 8 with &’ = &’ (IR3)3XS x &’ (1R3)3X2 and §’ = &’ (1R3)2><3 x &’ (]R3)2X2 such
that

iw Ej + curl; ]NBJ_ =]

o (3.52)
_l(,L)]BJ_ + curl ]E" = lﬁ'lJ_,

where jj = (613, 03x2) and 1, = (0243, dllp). In the view of the one-unknown equation (3.23)

2
Yp

and identity (3.15), the operator Ag = B2 + 652,) + 02 with B(w) =1 - —; plays a capital role in
the resolution of this problem. The following proposition illustrates this fact.

Proposition 3.3.13. Forw € C\R, the fundamental solution of the TM problem (3.52) is decomposed

in two parts
sing

B=E+ B, B, = B4 B,

with

Erg = (iw&of -1 %Hess ?L{f, -1 curl; (?gﬂz)), IBrfg = (&Trl (?ff _1), —iw?fl[z),
iw

and
]Eiing = (%) curl, curl ((ff * gD 4 wzgff) 113) , %curll div, 29, (?g * ?(})DIIZ)) ,

. 1~ — ] 7 1:
BY" = (EchrlL 9, (?f*@w 1)’ %)levl (?g*?‘*’wﬂz))’

eyiwlx\

where 1P = §y(x, y) ® € P(2) and €}P(2) = —y y = signIm w.

2iw
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Chapter 3. Hyperbolic Maxwell problem in free space

Proof. Using identity (3.15) in the one-unknown equation (3.23) yields
—AﬁINBL —w’B, = Erﬂ( _le) —iwm, — 71 Vdiv, B).
Similarly to the proof of proposition 3.2.1, div, B, solves this Helmholtz equation:
—92div, B, —w?div, B, = —a,curl( _1j]||) —iwdiv, m, .
Therefore, for v € C \ R, the unique solution to this equation is
div, B, = ?LID # (=0, curl, ( _1j]||) —iwdiv, m, )
= (—az curl (?LID _1) , —iwdiv) (?Lwﬂz)) ,

where 1P = 6)(x, ) ® €1P(z) and € P is the fundamental solution of the 1D Helmholtz equation,
see Lemma A.3.1. Thanks to the Proposition 3.3.2, we obtain

]BJ_ = gg* (cﬁlr_’rl( 71_]]") _lCt)]ﬁ'lJ_ _’871 vdiVLI’Bl)
_ (EJ;] (gﬁ )+ %vcurll 0. (9« lP ), R ’%ﬁdm (26« %“3112))

Due to the structure of , we have ~!curl, f = curl, fand ~!curl, V f = curl, V f. Finally,
using identity (A.6), Proposition 3.3.2, the identity curl, V f = — curl, a,f, it yields

—1 N
E = —— (jj —curl B,)

= (iw?f -1_ ﬁf Hess ?f + %)curlL curl ((?f * ?Lw + wsz) 113) ,
“Leurl, (‘ffﬂz) + %curlj_ div, 9, (?ff * fa)lD]Iz)) .

O

Finally, the following proposition gives an integral representation of the solution to the

hyperbolic problem. We do not give the proof, since it is the same as the elliptic case, see
Proposition 3.2.3

Proposition 3.3.14. For w € C\R, given J| € H(curlL 0; ]R3) n H(div; JR3), m; € H (diVJ_ 0; ]R3) n
H (curl ;R%), the unique solution of the TM problem (3.22) is

Ej=E « (Jl

= g4+ (i “i+ Teurl ) - vzl « div jj,
i, iwp

m;
In order to prove the existence of classic solutions for w € (0, wp), we would pass to the limit

~ 3
the expression of (E", B L) given in the previous proposition. However, since V?ﬁ + € (L1 (]R3)) ,

as it has been stated in Lemma 3.3.8, we need to impose more regularity on jj specifically.

Proposition 3.3.15. Let w € (0, wp), J| € H(curlL 0;]R3) n (%3 (]RS))S, m, € ﬁ(divl 0;]R3) n
(%2 (R%))”. Then,

E = (55_,_ * (ia) _lj” + “leurl, t, — #Vdivj"), BJ_ = ?er * (&TI‘I( _1j\|) —iwﬁu)
B lwﬁ )

are such that Ej € (‘51 (]R3))3, B, € (Cgl (JR3))2 and solve the TM problem (3.22) in a strong sense.
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3.3.3 Fourier Silver-Miiller radiation condition

Like the TE problem, the uniqueness of the reduced TM is ensured by a radiation condition. The
radiation condition (3.3.11) of the scalar problem associated to the TM problem is written with
the partial Fourier in the x, y-direction. Therefore, it is natural to extend this condition to the TM
problem within this framework.
Firstly, like radiation condition (3.3.11), we need the existence of the partial Fourier transform
of E" and B IR
3

[(x, y) €R? > E(x,y, z)] € (LZ(JRZ)) , aez€R, (353)
3.53
. 2

[(x, y) €R? > B, (x,y, z)] € (LZ(IRZ)) , ae.z€R.
Next, given (kx, ky) € R%, we impose the decrease of some combination of E|| = ?x,y [E"] and
B, = Fry [BL] when z — Foo:

|E},, sign(z) + a,,(ky, k)B4 o0 ae (ky k) € RZ,
Z|—>00

) ) (3.54)
‘E”’x sign(z) — a,(ky, ky)B L,y‘ m 0, ae. (keky) € R?,
. k2 + K, |2
with a,(ky, ky) = (|1 - — ﬁ(wy) .

Remark 3.3.16. The last condition can be written within the vector formalism, with B = <B 1 0):

A Z P
‘E” x =e, + a,(ky, ky)B,

" —— 0, ae (kok)€ R?.
z

|z| 00

Definition 3.3.17 (outgoing Fourier Silver-Miiller condition). A pair of vector fields E; €
Hy,, (curl, O;]R3) n (‘[gl (]R3))3 and B, € Hy, (div, 0; ]R3) n (‘61 (]R3))2 satisfies the outgoing
Fourier Silver-Miiller condition if it satisfies (3.53) and (3.54).

These considerations lead to the following theorem.
Theorem 3.3.18. Letw € (0, wp). IfE) € Hye (curlL 0;R3)n(‘€1 (]R3))3 andB, € Hy,, (diVJ_ 0;1R3)n
(%1 (]R3))2 solve the homogeneous TM problem (3.22) and satisfies the condition (3.3.17), then E; = 0
andB, =0.
Proof. Using (3.15) and (3.23), B, solves
—AﬂBJ_ —w’B, = 0.

Then, the application of the partial Fourier transform in the x, y-direction leads to the following
1D Helmholtz equation along the z-direction:

)2 22 , IKl? + [key[2 )
—32B, — (wa,(knky)) B =0, with a,(kuky)=,[1- TR (ky ky) € R2.

Then, there are two vectors B, B~ € R? such that B, = Btel@dolkeky)z | g-privakek))z o the
other hand, applying the partial Fourier transform to curl; B, + iw Ej = 0 gives the following
two identities:

9B x = —iwE) 9B y = IWE| 4.

Then, using the first identity with the first line of (3.54) imposes B; = By, =0, and the second

identity with the second line of (3.54) gives Bff = By = 0. O
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Remark 3.3.19. Notice that there is a priori no condition on ]/E\Z the third component of E". Indeed,
the above Fourier Silver-Miiller condition controls the energy of B, and Ej, solutions of the TM

problem (3.22), via the flux through the planes {z = +R} of the Poynting vector P = EH X I/BT In
particular, with Q = {(x, y,z) € R®, z € (=R, R)}, one can show that

ReJ P -ndx = 0.
0Q

Since E, is not involved in the quantity P - e,, it is naturally not involved in (3.54).

3.4 Conclusions

This chapter provides some results about the existence and the uniqueness of the solution to the
hyperbolic 3D Maxwell problem in free space (3.2). This was achieved in three main steps:

« the splitting of the original problem into the reduced TE problem (3.20) and the reduced
TM problem (3.22), where we justified the equivalence between these problems ;

« the existence of smooth solutions of the TE problem (3.20) and their uniqueness via a classic

Silver-Miiller radiation condition ;

« the existence of smooth solutions of the TM problem (3.22) and their uniqueness via the

establishment a Silver-Miiller radiation condition expressed with partial Fourier transforms.

Moreover, some results of [22], originally stated for the 2D hyperbolic problems, have been
extended to 3D. On the other hand, we pointed out some difficulties in establishing a radiation
condition without the use of partial Fourier transforms.

Although the uniqueness or the existence are well established, we still lack the results on
the control of the solutions in well-fitted norms (in particular those which would account for
the propagation of singularities along characteristics). Our next step would be establishing the
boundary integral equation framework for this problem, which would allow us to consider more

complicated cases of half-bounded, and, eventually, bounded domains.
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APPENDIX A

Appendix

A.1 Proof of Lemma 3.1.5
Lemma A.1.1 ([6]). The dispersion function is written:

F,(k) = (0 = w,(k)?) (o - w"+(k)2) (0? - a)"_(k)z)

= (2 — 2 (e — K2 (02 — A2 g2 (A1)
(@? = ) (o = k) (0 = Bl) ' ky* — KZ),

2
where w, (k)? = |k|?, and a)”i(k)2 = % (a)f, +|k? + A(k)) with A(k) = (a)zz, + |k|2) - 4kzza)f, <0.
Then E,, vanishes if:

1. w,(k)? = w’ and the associated eigenspace is span (k", eZ)L.
2. coH“—L(k)2 = w? and the associated eigenspaces are subset of span (ku, ez).
Proof. We reproduce here the proof given in [6]. The matrix
A(k) = |k[*T5 — kkT + a)f,ezezT

is symmetric, so its eigenvectors are orthogonal.
We first assume that |kH|2 =k2+ k)z, # 0. Thus, a first eigenvector is e, x k # 0:

Ak)(e, x k) = [[k’I3 — kkT + wle.e] | (e, x k) = [k[*(e; x k).

Thus, the first eigenvalue is w; (k)2 = |k|?, and the associated space is span (k).
The other two eigenvectors of A(k) are therefore in span(k,e;) = span(kj,e;). Letv €
span(kj, e;) \ {0} be an eigenvector of the system. We have:

(Alk)w) -k = a)f,kzvz =w’v-k,
(AW - e, = (kI + 03) v, — k, (k- v) = wPv,.

Notice that v, # 0: by contradiction, if v, = 0 then v - k = 0 which is not possible. By multiplying

the second equation by w? and replacing w?v - k by a)f,kzvz, we obtain the equation:

w* — w? (|k|2 + wf,) + a)lz,kzz =0. (A.2)
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The solutions of this equation are the two other eigenvalues:

oy + |k[? £ JA(k)
2

2
of (k) = . with  A(K) = (0} + k)" — 4k2ol.

By factoring the equation (A.2) by (w? — a)f,), this equation can be rewritten in the form:

w2\
(a)z — wf,) R (1 - w—g) |k|||2 —k|=o.

Finally, if k| = 0, i.e,, k = k.e,, then A(k) = K215 + (%27 - k§) e,e) . Thus, its eigenvalue-vector
pairs are (a)f,, e,), (k%,e,) and (k2, e)). Notice that | (kye,)? = k2, a)f(kzez)2 = max (a)f,, k2 ) and
o (k,e,)? = min (a)f, kg) Moreover, the associated eigenspace is span (ez)L when k? = 0?. [

A.2 Reduced differential operators

The following operators are introduced in section 3.1.4:

— 9yF, — 9,F, )
curl F = , curl; F = 0,F, — d,F,, div, F = 0xF, + 9,Fy,

azF x axF z

—9,F,

curl, F = 9.F, , curl, F = OxF), — 9, Fy, div, F = 9,F, + 9yF),

OxF), — 0, Fy

ayf o f
curl, f = curl(fe,)=|-a.f|, Vf= (;f) Ay f=div, Vf=div, Vf=0f +d2f,
Y
0

where F = (F, F), F)" and F = (F,, Fy)T. Notice that the operators are consistent with the

classical curl-operator since
curlcurl F = curl, curl F + curl, curl, F.

Then, we have the following identities:

curl curl, F = Vdiv, F — AF, (A3)
curl, curl F = Vdiv F — AF — curl, curl, F, (A.4)
curl ~'eurl, F = 71 Vdiv, F - AgF, (A.5)
curl; curl 'F = Bt VdivF - AgF — B Yeurl, curl; F, (A.6)
curl, curl F = 9,div, F— A, F, (A7)
curl, curl, F = 9,div, F, (A.8)

Additionally, we have:

div, curl F = —a, curl, F, (A.9)
div, curl, F = —9,curl F. (A.10)
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A.3. Reminder on Helmholtz Fundamental Solutions

A.3 Reminder on Helmholtz Fundamental Solutions

Let us recall some technical lemmas related to the classical Helmholtz equation in R and R.

Lemma A.3.1. For w € C\ R, the unique fundamental solution in §’(R) to the 1D Helmholtz
equation —8/ — w*%,, = & is
eViolx|

G,(x)=—y i withy = signIm w. (A.11)

Proof. The application of the Fourier transform to the equation gives (k2 - wz) FE,=1inS'(R).
Since @ € C \ R, the function k — (k* — wz)_l belongs to € (R), so that its singular support is
empty. Therefore, the multiplication of (k2 - a)z)_1 and (k2 — a)z) F €, is valid' in §’(R). Then,
we have # &, (k) = (k2 - wz)_l e L'(R) and

1 eikx
g = — dk.
o(%) 27 JR k2 — 2
For Imw > 0, the application of the residue theorem on [—R, R] u {Re.0 € [0, 7]} for x > 0 or
[—R,R] u{Re",0 € [-r,0]} for x < 0 yields &,(x) = —W. A similar argument for Imw < 0
. _ exp(—iwx)
results in &, (x) = — O
Lemma A.3.2. For o € C\ 'R, the unique fundamental solution in §’(R>) to the 3D Helmholtz

equation —AG,, — w*%,, = & is

eViolx]

 drlx|’

,,(x) withy = signIm w. (A.12)
Proof. Applying the Fourier transform to the equation, one obtains that (|k|2 - wz) FG, =1
Since w € C \' R, the function k — (Jk|* — wz)_l belongs to €*(R%), and its singular support is
empty. Therefore, we have &, (k) = (|k|2 - wz)_l € L?(R?) and

elkx
g =l
(%) Pl (27) »[BR K[2 — 02

Therefore, a simple computation gives

1 eik’x 1 R T 2 p2 sin geip|x\ cosf
3 J 7 odk= 3 J J J —— 5 —dpddde
2r) B, k> — @) Jp=0Jo=0Jp=0  p*-0w

_ 2 J R psin(plx[)
@r)lx| Jo  p? —w?
_ 1 J’R peiPM

@) arlel) ) 77—

dp.

Finally, by applying the residue theorem on [-R, R] u {Reé?,0 € [0, 7]} and taking the limit as
R — +o00, we obtain the expected result. O

!This step guarantees the uniqueness of the fundamental solution. The multiplication is obviously not valid if
w€R
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Another useful lemma concerns the scaled Helmholtz equation.

Corollary A.3.3. The fundamental solution of the scaled Helmholtz equation
—,3_1 (8,?; + 8}2,) u-— 8Z2u —wlu = %>

with f >0 andw € C\R is

i _exp (yiwxlﬂ(xz +9%) + z2>

S y2) =B - ,
4| B(x2 + y2) + 22

Proof. The application of change of variables (x,y,z) = (/;_1/ 2xy, B‘l/ 2x2,x3) to the scaled

y = sign(Im w). (A.13)

Helmholtz equation leads back to the classical 3D Helmholtz equation
“Agf - w2gf = g5,

One can verify [34, example 6.1.3] with f(x;, x5, x3) = (ﬁ_l/le,ﬁ_l/zxz, x3) for the scaling in

front of the Dirac measure. Finally, applying Lemma A.3.2 is sufficient to conclude. O

A.4 Hyperbolic coordinates

The 2D Helmholtz equation can be naturally written with the polar coordinates:
1 1 9 2
—=0,(rou) — < dpu — wu = f.
r r

However, the polar coordinates are clearly not adapted to the 2D hyperbolic Helmholtz equation
studied in [22]:
~B1o%u — o*u— w*u = f.
Let us assume f§ = —1 for this paragraph. Then, making the change of variable { = z—x,n=z+x
leads to the equation
2 2., —
405 u + wu = f,
with some abuse of notation. But this change of variable is not possible in the 3D coordinates

since it corresponds to a rotation of the xz-plane of a 7 /4-angle. Another system of coordinates

in which the equation could be studied is the following:
x = psinh 6, y = pcosh@,

with p > 0 and 0 € R. This change of coordinates maps the upper cone {(x,y) € R? : y > |x]}

onto (0, +00) x R. In this system of coordinate, the equation becomes
1 1 2 2, —
—7)8/) (papu) + Eagu —wu = f.

Then, this equation is very similar with the classical Helmholtz equation in polar coordinates
except the presence of a minus sign in front of the second term p_zagu. Then, the equivalent
change in 3D is

x = psinhfcos ¢, y = psinh fsin ¢, z = pcosh@,

with p > 0,60 > 0 and ¢ € (-, 7).
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CHAPTER 4

State of the art

Contents
4.1 Mathematical setting . . . . . .. ... ... L L 64
4.2 The method from Nicolopoulosetal. . .. ... ... ... ... ... ..... 69

The propagation of electromagnetic waves inside the plasma has already been investigated in
[49]. In particular, a numerical method based on a mixed variational formulation was proposed
in [49]. This method is summarized in §4.2. From the physics viewpoint, There is a logarithmic
singularity that is responsible for plasma heating phenomenon [25, 26]. In what follows, we study
a mathematical model that allows to recover this singular behavior.

We consider a bounded Lipschitz domain D in R?. Let A > 0 and f € L?(9D). We study the

following boundary value problem:

—div,( ¢V, B;)—w?’B;=0 inD,
(0VJ_B3)'HJ_+i/1B3:f OnaD,

(4.1)

where n; denotes the outward unit vector field to dD. According to our model, it holds that

o(x,) = ap(x,)H(x, ), where the scalar field &, and the hermitian matrix field H are €%(D)-
regular (cf. (2.7)). Weset D, = {x;, € D : ay(x,) > 0}, D, = {x, € D : x,) < 0}, and
recall that the interface I = {x, € D : ay(x,) = 0} is a C!-loop (without self-intersections). We
assume here that meas(Dp,n) > 0, and that I does not intersect dD. Observe that outside every
neighborhood of I we are solving a classic second-order elliptic PDE with smooth coefficients.
Hence, following the classical theory, we shall look for a solution that belongs to H* outside this
neighborhood. To fix ideas, we consider the case where that D is a tubular neighborhood of L
Finally, we recall that |a| behaves like dist(-, I) in a neighborhood of the interface.

Remark 4.0.1. The limit conditions have been chosen so that it mimics the classical absorbing
condition used to solve Maxwell’s system in bounded domain, see [1] for example. Instinctively,
the problem is a priori solvable for any frequency w, and this choice allows us to focus on the

appearance of the singular behavior of the solutions at the interface.
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4.1 Mathematical setting

Like in [49], we focus on the problem (4.1) posed in the neighborhood of the interface. Let
Q = (—a,a) % (0, L) be a subset of R?, with the normalized orthogonal coordinates (x, y). Introduce
the bijective transform ¢/ : x = (x,y) — x, which maps Q to D with the following properties,

see Figure 4.1:
« the preimage of the interface Iis the straight line ¥ = {0} x [0, L) ;
« the preimage of the subregion D, is the rectangle Q, = (—a,0) x (0,L);
« the preimage of the subregion D,, is the rectangle Q,, = (0,a) x (0, L);
« the preimage of 9D, \ Iis the straight line {—a} x [0,L);
- the preimage of 9D, \ Iis the straight line {a} x[0,L);

« the image of (—a, a) x {0} is equal to the image of (—a, a) x {L}.

t >
I x, = y(x,y) y=1L
1—‘n Qn T QP FF
[
D I)p )/%;L:—a x=a

Figure 4.1: [Left] The tubular neighborhood D of I [Right] The domain Q = (—a,a) x (0, L).
[Center] The transform ¢y : Q — D with /(3) = I, Y(Qpp) = Dppand Y(Tp,) = 0Dy, \ L

We split the boundary of Q into 4 components:
I,={a}x(0,L), Tp,={-a}x(0,L), Ty=(-aa)x{0}, TIy=(-aa)x{L}

Let u := B3 o). Then, we have VBs(x,) = [Di,b(x)]_t Vu(x) where x; = 1/(x). Then, expressing
(4.1) variationally and following [9, §2.1.3], we have for all v € €1(Q)

J, £ oGm0 7tx,) — 0P By i
= I {7(X)Vu(x) SVW(x) — 2] (x)u(x)w(x)} dx
O

where w = vo 1, J(x) = |det Dy(x)| and _(x) = J(x)[Dy(x)]™! o(x,)[Dy(x)]* with the corre-
spondence x, = 1/(x, y). Next, on the interface 9D, we have for all v € ¥1(Q)

LD{ o VB (x,) - 1y (x1) + iABy(x, )} v(x )ds(x, )

= L { Vu(x) - n(x) +idJn (x)u(x)} w(x)ds(x)

nlp
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where J,(x) = J(x) H [Dt,b(x)]_tn”Rz and n denotes the outward unit vector field to 9Q. Thus, the

problem on u is

—div(_Vu) — 0*J(x)u =0 in Q,

Vu-n+iljju=f onlul,

u(x,0) = u(x, L), (Vu-e))(x,0)=(Vu-e)x,L), x€(-a,a),

with f(x) = J,(x)f ° ¥(x). Above, the divergence and gradient operators are the classical 2D
operators. The last condition accounts for periodicity.

We can assume that the transform is volume preserving so that J(x) = 1 and J,(x) = 1. This
requirement does not reduce the scope of the study since there exist two constants Cip, Cipax > 0
such that Cpi, < J(X) < Cpax for all x € Q, and Cpjy < Jp(%) < Crpax forallx € T, ul,. Therefore,
the definition of _(x) in (4.1) changes to _(x) = [Dy(x)]™ o(x)[Dy(x)] ™.

In what follows, we make two simplifying technical assumptions. First, that _ is pointwise
proportional to the identity matrix, that is _(x) = a(x) ((1) (1)) everywhere in Q. Here we use, with
an abuse of notation, the same letter for the new coefficient a(x) and the coefficient a(x ) in (2.6);

those however are not to be confused. In this situation, the model can be recast as

—div(aVu) — w’u =0 in Q,
aopu +ilu = f onl,ul, (4.2)
u(x,0) = u(x,L), (adyu(x,0) = (ad))u(x,L), x € (—a, a).

Let r(y) := 9,@(0,y). Notice that r € %;e,(o, L). We assume that the sign change of « does not
degenerate, i.e., r(y) > 0 for all y € (0, L). Due to these assumptions, the behavior of « near the
interface ¥ = {(x,y) : x = 0} is simple:

a(x,y) =r(y)x + O(x?).

Because the coefficient « is a scalar, we observe that the interface X is now described by {(x, y) :
a(x,y) = 0}, while the two subdomains are respectively described by Q,, = {(x,y) : a(x,y) > 0}
and Q, = {(x,y) : a(x,y) <0}

There remains to specify the requested regularity of u, so as to allow for the modelling of
plasma heating. In this manuscript, we look for limiting absorption solutions of the above problem,
namely, we look for u being an L?-weak limit of «’, as v — 0%, where v’ € H'(Q) is solution of

the following limiting absorption problem:

find v’ € HY(Q) s.t.

—div((a + iv)Vu") — 0*u’ = 0 in Q, (43)

(a +iv)ou’ +idu’ = f onT,uT),

u"(x,0) = u"(x, L), ((a +iv) 8y) u’(x,0) = ((a +iv) 6y) u(x,L), x€(—a, a).
Proposition 4.1.1. The problem (4.3) is well-posed for all v € R and for all v positive. Moreover, for
small enough v > 0, there is a constant independent of v such that its unique solution verifies

C
[l ) < " IAzarur,) -
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Proof. The variational form of the problem (4.3) is
find u¥ € H‘ge,}y(Q) s.t.

J [(a +iv) Vu” - Vv — 0?u™] dx + i}tj
Q

u'ds = J fwds, forallve Hjl,er,y(Q).
Lyl

LTy,

b"(u'wv) ()

Since the LZ(FP u T,)-norm is controlled by the H'(Q)-norm, b" and ¢ are continuous in H!(Q).

Given that for all u € H},er,y(Q)
2 2 2 2
Reb"(u,u) < oo Vil 12(0) = @ lulizq) . Imb"(wu) = vIVulizq) + Alulizqr o) -

we easily obtain for w # 0 that

. - + 2
||u||§{1(9) <Re (— (1 + M) b"(u, u))

VW

On the other hand, if w = 0, then we use Poincaré-Friedrichs inequality (see e.g., [54, example
2.7])

2oy < C IVl + e o))

for some C > 0, so that
A1+C)+vC
||u||§11(Q) <Im <%b"(u, u)) .

The Lax-Milgram theorem allows us to conclude in both cases. O

Up to our knowledge, the limiting absorption principle can be justified in 1D, as well as for
particular values of a(x, y) in slab geometries, cf. [25, 26]. Let us provide an illuminating example
whose goal is two-fold. On one hand, we will show how the limiting absorption principle leads to
the occurrence of a logarithmic singularity in the solution. On the other hand, we will highlight
the difficulty in the choice of the functional framework that would accommodate such singular
solutions. Consider the 1D boundary-value problem: given ¢;, ¢, € R, find u solving

—(xu’) =0o0nJ :=(—a,a), u(—a)=cy, ula)=c,.
In this 1D setting, > = {0}. We could have looked for the solution to the above problem in the

—|
space %11/2(j) — Cm(ﬁ laf1/2

, where

AT B

In the definition of the norm above, the choice of the weight in front of [v’|? is motivated by the
ODE itself, since after multiplying it by any admissible function v supported away from 0 in either
Jp =(0,a) or 5, = (—a,0) and integrating by parts, one gets a volume term like + ij,n |x|u’v’.
In this space, the bilinear form associated to the above equation is obviously continuous. A
straightforward computation shows that in this case u is a piecewise constant function

u=con(—a0), u=c on(0,a).

We see that the above solution does not contain any singularity other than the jump at the origin.
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On the other hand, we can have a look at the limiting absorption solution to the above
equation, where the absorption solution solves

—((x+)@))Y =0onS, u(—a)=c,u(a)=c.

In particular, for each v > 0 the H!(.%)-solution to this problem is unique. With z ~ log z defined
by its principal value (i.e., log(z) = log|z| + i Arg(z), Argz € (—x,n)), we then compute the
solution to the above equation

Q0
log(a + iv) — log(—a + iv)’

u’ = a,log(x +iv)+b, withag, = and b, = ¢; — a,log(a + iv).
Since log (x + iv) — log |x| + irl,<o for x € R*, the limiting absorption solution u*(x) =
v—0

lim 4" is given by the pointwise limit
v—0+

€ —c¢
ut(x) = a, (log|x| + inlyey) + by, ay = 1 2 by =cy—a,loga.
in
Note that | J|x||(u+)'|2 = 400 as soon as a, # 0. We thus see the difference between two solutions
ue %11 /z(j ) and u™: the first one has a jump singularity only, while the second one has both a
logarithmic and a jump singularities. Therefore, we focus on approximating the latter solution
that includes the jump and logarithmic singularities for the 2D model (4.2). From now on, we use

the following notation to describe the singularity:
S(x) = log|x| + irl,«.

Let Cher,y (ﬁj) ={ve C“(ﬁj) : Yv(x, 0) = dv(x, L), vm}, j € {p,n}. Introduce the two spaces

Hll/z(Qj) = Cper,y (Qj) ‘“‘l/z,j € {p, n}, with associated norm

o2, = ij v+ L]_ i, e tp.n}
Defining the above spaces is motivated by the same observation as above: multiplying the second-
order PDE by any admissible function v supported either in Q, or Q, and integrating by parts, one
gets a volume term like + pr’n |a|Vu - Vv. It has been proved in [49, Proposition 4] that problem
(4.2) admits a unique solution in Hll/Z(Qp) X Hll/z(Qn). On the other hand, S ¢ Hll/z(Qj),j e {p,n}
because of the logarithmic singularity.
In light of the 1D example, we consider from now on that one can recast the 2D model with

solution u as follows.

Assumption 4.1.2. The family of solutions (u"),~q of (4.3) converges in L*(Q) to the limiting

absorption solution u™ € L*(Q)

O

—u". (4.4)
v—0+

uV

Moreover, u™ can be represented as

+

— +
U =Upgg U

sing>
where the pair (i, ug;

sing) IS such that u;’ég‘Qp’n € Hll/z(Qp,n) and uzgng(x, y) = gt (y)S(x) with
ghe H;%er(z)-
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Regarding the convergence, the validity of this assumption will be studied in chapter 5. On the
other hand, the mathematical relevance of assumption 4.1.2 is discussed in the next proposition.

Proposition 4.1.3. Letu" be governed by (4.2).

In the framework of Assumption 4.1.2, there holds thatu™ € HY(Q\% (X)), for each neighborhood
of the interface 7" ().

Conversely, if u can be decomposed as u* = ufyq + g, , where u;;g‘Qpn € Hll/z(Qp)n) is periodic
in y-direction and where uzgng(x, y) = gt (y)S(x), and if there holds thai ut € HH(Q\ 7 (2)) for
each neighborhood of the interface 7' (), then g* € Hll,e,(Z).

Proof. Away from the interface 3, the norms of H /Z(QP,H\W(Z)) and H 1(QID’,,\W(Z)) are equiv-
alent. Therefore, given u* within the framework of Assumption 4.1.2, we clearly have u}q, ug;, g€
HY(Qpn\7 (2)).

On the other hand, if u* € H! (Q\ 7(2)) and u;;g‘QM € Hll/z(Qp,n) for all neighborhood of
the interface 7°(X2), then u;;ng € H' (Q\ 7 (2)). In particular for Q¢ = {(x, Y)EQ, x> e}, we
have that

2 2 712
‘|“§ng“H1(QZ) =gl ISl eay + g™ 12() IS12(e.)

which shows that g* € H!(2). The periodic conditions come from the periodicity of u™ and

+
Ureg- O

Starting from (4.4), it is easy to verify that the limiting absorption solution u* is governed by
the 2D model

—div (aVu™) - ut =0 inQyy,
adut +ilut = f onTp,, (4.5)
ut(x,0) =u"(x,L), (ad)u’(x,0) = (ad)u’(x,L), x€(-a, a)ae.

We identify the function u;}, ¢ With a pair
ut = (ujengps u;i_egIQn) €Q:= Hll/z(Qp) x Hll/z(Qn)- (4.6)
For generic g(y), we use the notation

sg(x, ) 1= g(1)8(x). (4.7)

As noticed in the 1D example, when the singular coefficient g* does not vanish, sg+ does not
belong to the space H11 /2(9 p) x H11 /2(Qn), hence the notation Sgts with s for “singular”.

Givenu' = (ujg, uh) e Hl1 /2(Q ) X Hl1 /Z(Qn) and gt € H;er(E) a solution of the system (4.5),
no transmission condition through ¥ is imposed a priori between u; and ;. On the other hand,
the convergence assumption (4.4) contains a hidden transmission condition through X, as we will

see in chapter 6.

Remark 4.1.4. One could also examine a problem with a non-smooth sign-changing coefficient
a. For example, a(x) = sign(x)|x|ﬁ with f > 0. Then, one could add some absorption and solve
— ((a(x) + iv)uw)/ = 0. Then, using [51, (15.6.1)], and the help of some formal computation
software, the solution writes u"(x) = f}F(l, l; 1+ l; _ sign()ll’

5 5 > ) where Fis the hypergeometric
function, see [51, (15.2.1)].
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4.2. The method from Nicolopoulos et al.

=
Remark 4.1.5. It is unclear if we can use Hll/z(Q) = Cper,y (Q) /2 Indeed, it might contain
functions which are not distributions. Therefore, we use separate spaces on both side of the

interface, as suggested in [41].

4.2 The method from Nicolopoulos et al.

We now recall the main ingredients that were used by Nicolopoulos, Campos Pinto, et al. in [49,
50] to build a numerical approximation to problem (4.2), with its solution split into a regular and
a singular part. We emphasize that the derivation of the mathematical model is formal, cf. [49,
theorem 2], whereas we propose a mathematical derivation based on assumption 4.1.2. Also, a
stronger assumption on the singular part was used in [49], namely that g € Hf,er(Z), which has

strong consequences numerically, see §4.2.2.

4.2.1 Main ideas and formulation of the method

In order to explain the method of [49], let us introduce the following functions, which we describe
as “singularities with absorption”

sg(x,y) = g(y)log (x + #‘;)) with v>0, g€ Hfl,er(Z). (4.8)

The absorption parameter scaled by 1/r(y) will ensure some nice convergence properties on

second order derivatives. We also introduce the weighted L?(%)-norm

|mr:(@ﬂw&@wﬁw (49)

and its associated inner product is denoted by (-, -);. Note that for all g € L%(), it is easily checked
that sy — sg in L%(Q) as v — 0+. One needs the following three technical results, whose proofs

are given in section 6.2.1.

Lemma 4.2.1. Given g € H;er(Z), the following limits hold in L*(Q) asv — 0+:
5 5 55 = s
(@ + iv)0ysy = adySg, Ox((ar + iv)dysy) = Ix(@dysy).

Let ¢ be a truncation function satisfying
Definition 4.2.2. Given ¢; € Ci((~a,a); R) and ¢; = 1 in the vicinity of x = 0, let p(x, y) = ¢;(x).

This function is used to localize the contribution near the interface. The method of [49] relies

on the observation that, for g # 0, the singular ansatz s, does not belong to Q.

Lemma 4.2.3. Let g € H;er(Z) and a truncation function ¢ as in definition 4.2.2. Then the following
limit holds:

lim | v[Vsi2pdx = x|g|® > 0.
Jim | vivsiodx = gl
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Physically, the above identity is related to the plasma heating [26, 50]. Let u” € H(Q) be
the unique solution of (4.3). By assumption 4.1.2, u” — ufeg + sg in L?(Q), as v — 0+. We then
split u” = uype + s§+; evidently, sg,+ — sy in LX(Q), and u)py — whe in L*(Q). Recall that uy}, is
identified with a pair of functions u* = (u}, u}).

Lemma 4.2.4. Let (u"),~q be a family governed by (4.3) fulfilling assumption 4.1.2. Then,
) 2
V1_1)161+ JQ V‘Vu}’eg‘ pdx = 0. (4.10)

The above observations serve as a basis to construct a functional to minimize; this minimization
procedure will yield a desired variational formulation. As a matter of fact, if we consider the

function s;, with h € sz,er(Z) being an artificial variable: we observe that

[T

goes to 0 as vgoes to 0 if h = g*. The difficulty is now to link this result with the problem at hand.

2
qodx).

Interestingly, one may rewrite the above integral as

L V‘V (uﬁeg + Sng_h)‘z pdx = Im (J'Q(a(x, y) +iv) ‘V (u}’eg + s£,+ - s;vl)

Hence, if we define the following energy functional:

2
B gt h)=Im (J'Q(a(x, y) +iv) ‘V (u}’eg + SEJ, - s%) qodx) , (4.11)
we have that 7"(uye,, g, h) converges to the limit n|gt - h||12r when v — 0+. We obviously
observe that lim, g+ 7" (uyeg, g",g") = 0. Hence, the limit of (Wregs g",g") should be a solution
to a minimization problem expressed variationally. Introducing v® .= Qo x Hﬁer(Z) X Hﬁer(Z), we
find that the limit is governed by the following mixed variational formulation (see chapter 6 for a

complete derivation):

Find (u, g, h) € V® and A € Q such that
ad® ((u, g, h), (v, kD)) —bD ((v,k,1),A) =0,  V(v,k,]) e VP, (4.12)
b ((u, g, h), ) = t(p), Vp€Q.

First, the form a® . v@ v 5 € can be recast as

a u, g, h),(v,k, = oa(u; + Se_p )0, (v; + s1._1)0,pdx
@ ((u, g h). (v. k.1) Zj () + 512, + e-Doypd
jelpny 7%

- o (X(Vj + sk—l)ax(uj + Sg—h)axqodx
o (4.13)
—| (~divavs, — a)zsh) (v + se—ppdx

Q.

]
.

+ | (—divavs - wzsl)(uj + sg_p)pdx.

J

]

The sesquilinear form b@ . v@ x 0 - Cis, in its turn, given by

b® ((u, g, h), v) = biey(u, v) + b (g, v), (4.14)
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where, for allu,ve Q, g € ng,(z)

bggg),r(u, V) = Z J (aVu; - Vv, — wuv;) dx + J' iAujvds, (4.15)
jetpny 77 T

bﬁf,fg(g, V) = Z J' (— div(aVs,) — wzsg) vidx + J (09,Sg + iAsg)Vids. (4.16)
jelpn} 7 T

Finally, the antilinear form ¢®)(p) is defined as

@)= ¥ | sues

Jjetp.n}

In order to guarantee the well-posedness, two stabilization terms are added to (4.12). More
precisely, one considers

Find (u, g, h) € V® and A € Q such that
a (g ). vk D)~ 0D (VD=0 Wv.kD)eV®, (4.17)
b ((u, g, h), ) = D), vpeQ,

where

0S5 (u, g h). (v, kD) = a® ((u, g. 1), (v.k. D) + 1 (—p(g. ) przgsy + 1(@yyh. 0y Dyacsy)

with p, g > 0. The form of the stabilization terms follows from the T-coercivity requirements on
the first sesquilinear form a® | see [18] for the definition of the T-coercivity. It is shown in [49,
Theorem 16] that for p, p > 0, and f € Lz(l"p uT,), the problem (4.17) is well-posed. However, up
to our knowledge, there exists no proof that the solution to (4.17) is a limiting absorption solution
of the original problem.

4.2.2 Numerical experiments and comments

In [49], a conforming discretization of (4.17) was proposed, with stlz)hz = Qp, ¥ Hﬁz X Hﬁz,

O, ={wm, €Q: vh1|K € P;(K), forall K € Pfh?}
Hﬁz ={pn, € Hﬁer(Z) : phz’K € H,(K), forall K € ,7}122},

where H,,(K) is Hermite finite element of order m, 971? is a triangulation of Q with meshsize h;
that is conforming with respect to the interface X (for all K € 7}, , int(K) n 2 = @), and thzz isa
triangulation of 3 with meshsize h;. Notice that the restriction to Q, (respectively €,) of elements
of Qp, belongs to H 1(Qp) (resp. H(Q,)). On the other hand, there is no matching condition at

the interface for elements of Qy, .
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The discretization of (4.17) leads to the linear system AUy, p,, = L where:

A® _g@T
B® ¢

At ot
Ay 0 —As T —ALs,

0o A, —An,ng ~Aps, T B, 0 By, 0

AQ) — B® —

Aps, Ans,  As, —Azg,th 0 B, By, 0

H

Aps, Ans, Az, As,
T T
Uhl,hz:(Up,h1 Unh, Gn, Hn, App, An,hz) ; L:(o 00 0 L, Ln) ,

where the stars stand for minus transpose conjugate, so that A = —AT, A® = —A(Z)T. This holds
because the sesquilinear form a,%), is anti-hermitian'.

In the original paper [49], the numerical experiments were done for a single discretization.
Structured meshes were used for both regular and singular parts, with hy = 4h;. In particular, the
question of the convergence of the discrete solution to the continuous one was not addressed.
The goal of this section is to provide insight into this question, by letting h; vary and keeping
hy = 4h,.

We consider the case a(x,y) = x, ® = 0 and perform two experiments with L = 2 on the
domain Q = (-1, 1) x (—1, 1) with known exact solutions. We choose the boundary data so that,
in the first case, the exact solution is purely regular and equal to u(x, y) = 1, and in the second
case it is given by u(x, y) = log |x| + inl,(. In the first case g(y) = 0, while in the second case,
there is a non-zero singular part sg(x, y) with g(y) = 1. Notice that the stabilization parameters
p, j1 are taken equal p = p = 107°.

We use the code provided by A. Nicolopoulos written in FreeFem++ [32]. The amplitude of
the singular part g was discretized with the 2D HCT finite elements penalized along the normal
direction, i.e., we add to Azg and As, the corresponding term to the discretization of the following

sesquilinear form, with a coefficient Z > 0 large enough:

ZiJ 9.8 9k dx.
Q

Notice that results given below may vary depending on the mesh used to discretize the singular
part g.

We denote by e;2(u), resp. eg(u), the relative error of the regular part in L%(Q)-norm, resp. in
|lp norm. And we denote by e;2(g) the relative error of the singular coefficient in L?(2)-norm.
Note that, when measuring volume errors, we do not take into account the cells that touch
the interface because we observed that the errors were strongly localized in these cells. This
phenomenon is clearly linked to the singular behavior of « near the interface.

Although u = 1 belongs to the discrete space, the computed solution does not seem to
converge, see figure 4.2a on a log-log scale. This phenomenon happens regardless of the value
of the stabilization parameters p, y from 1072 to 1077, On the other hand, the results with
u = log|x| + irl,.( are promising in the sense that the relative error is small, although it does
not converge; see Figure 4.2b.

!A sesquilinear form b : V x Vis anti-hermitian if b(u, v) = —b(v, u).
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+eL2(u) —— €Q(U) —o— eLz(g) —* eyl (g) ‘

T T LI ‘ [ T T T 1 \ -
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(@ u=1. (b) u = log |x| + iml,.

Figure 4.2: Relative errors with structured meshes for regular and singular parts.

These experiments seem to indicate that the numerical method of [49] does not converge
numerically. We do not know whether the source of the instability is intrinsic to the numerical
variational formulation itself, or is due to the penalization of the HCT elements in the normal
direction, used in the implementation. In this manuscript, we will not dwell on the precise reason

for this instability. Instead, we propose in chapter 6 an alternative method.
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CHAPTER 5

Fourier analysis

Contents
5.1 Problem setting and definitions . . . . . . ... ... Lo o oL 75
5.2 Limiting absorption solution . . . . ... ... ... ... ... . . L. 77
53 Regularity matters . . . . . . . ... 85
5.4 Limiting absorption principle . . . . . .. .. ... L. Lo o Lo 88
5.5 Conclusions . . .. . .. . 90
Appendices . . . . .. 90
5.A Studyinanothercase . . .. ... ... .. ... ... 90

5.1 Problem setting and definitions

Let Q = (—1,1) x (0, L), with the notations of Chapter 4. The aim of this chapter is the study of
the problem

find u such that
— div(aVu) — w?*u = fo in Q,

J (5.1)
u=0 onT,uly,

u(x,0) = u(x, L), (aay) u(x,0) = (aay) u(x,L), xe€(-1,1),

where f;, € L%(Q). Finding desirable properties of fq from which the regularity of solutions can
be inferred a priori is actually one of the issues of this chapter.

Therefore, the method used below consists in decomposing the solution u into an appropriate
function basis. In order to find the appropriate function basis, we also formulate the following

assumption on the pattern of a.

Assumption 5.1.1. Givenr(y) € %ger([o, L]; (0, +00)), the function a can be written as a(x,y) =
r(y)x.



Chapter 5. Fourier analysis

The interface in the sense of Chapter 4 is thus ¥ = {0} x [0, L). Moreover, we divide the
domain into two parts Q,, = (0,1) x (0, L) and Q, = (—1,0) x (0, L). Aside from this assumption,
we have switched from inhomogeneous Robin’s boundary conditions to homogeneous Dirichlet’s
boundary conditions. This change is not restrictive. Indeed, given u the solution to the problem
with Robin’s boundary conditions, it is assumed H' away of the interface ¥. Therefore, it is also
a solution to the problem with Dirichlet’s boundary conditions formulated on a subset of the
original domain and the subset would still contain the interface. This modification simplifies the
computations and enable us to concentrate on the behavior of the problem near the interface.
Besides, homogeneous Dirichlet’s boundary conditions are not restrictive since it is always
possible to lift these boundary conditions. Then, such a lifting is taken into account into the
volume source term and the boundary conditions become homogeneous. It is always possible to
construct lifting whose support does not intersect the interface.

Indeed, notice the appearance of the volume source term f,, in comparison with Chapter 4.
Since this source term may induce a behavior of the solution « “more” singular than the expected
logarithmic plus jump singularity, the influence of the source term will be carefully examined
throughout this chapter. Up to our knowledge, only vanishing source term with non-homogeneous
boundary conditions where considered in the study of lower hybrid resonance. As noticed in the
previous paragraph, such boundary conditions can be modeled by a source term with a disjoint

support from the interface.

This chapter begins with a precise explicit description of the solutions of the problem. Then,
since the computations are explicit, basic regularity properties are studied. Finally, the limiting
absorption principle is proved. The argument is developed only for w = 0, even though the same
method also applies for w # 0. In the view of the method used, the results obtained are obviously

]Rd+1

valid in any dimension , assuming the interface is a d-dimensional manifold.

Let us outline the method used. If r(y) = 1, then we solve
—div(xVu) = f in Q.

We can consider the Fourier’s expansion of u with respect to the variable y, so that we can
decompose u(x,y) = Y ez up(x) exp (M%}) Then one can derive an equation for each u(x),
solve it, etc...This process leads to an explicit formula ready to be studied.

In a general case, r(y) is not a constant. Therefore, one has to decompose u(x, y) on a basis
that is adapted to r(y) € %ﬁer ([0, L]; ]R,JC) To that aim, we define the following complex Hilbert
space L2(0, L) = L?(0, L) with its inner product

L -
(1), = [ u(YWOIr()dy,

0

and the following functions, given by the spectral theorem.

Definition 5.1.2. Let ()N be the eigenvectors of the operator —r_lay (ray-) on (0, L) with
periodic boundary conditions, such that (j).¢n constitute a normalized orthogonal Hilbert
basis of L2(0, L). Each eigenvector . is associated to a real positive eigenvalue /1]‘3 such that the

sequence (Ao increases and limy._, ;o A = +oo. In particular 4y = 0 and ¢y is constant.
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If u € L2(0, L), then we can decompose it as u(y) = Y yen Ut/i(V). Parseval’s identity ensures
that

2
[ulf20r) = >, luil?.
keN

Lemma 5.1.3. Letu € L2(0, L) be such that oyu € L2(0,L). Then

2
- 2
HaJ/“HLg(O,L) - Z ZE
keN
Proof. By definition, for all k € N, the eigenvector i verifies

(ay'ﬁk’ ayV)ler(O’L) = /1]% (Vs V)L]Z:(O,L) , WE H;%er(o, 1).

2
On one hand, this yields Haygka 2000) = /1,% ||¢k||i%(0,m = /1,% because (i) are normalized, and on
the other hand, (aygbk, 6yl//l) L2001 =0, for k # I, because ()i are orthogonal. Thus, we have that

2 2
Hayu 120, ~ Z el® HaywkHLg(O,L) = Z | Akl
keN kelN

O]

From this point, we define the following fractional Sobolev spaces for s > 0 with their

associated norms:

H(0,L) ={u € LZ(0,L) = ), |/1,§uk|2 < oo}, ||u||§ﬁ =y (1+ A2) 2.
keN keN

Finally, we define the following classical Sobolev space on Q:
H Q) ={uel2@: Vue 2@}, [l = L [luf? + [Vu?] £(y)dx.

Then, it is naturally connected with H}(0, L), so that we can decompose u € H! (Q,r) as u(x, y) =
Y keN U(x)Yk(y). Moreover, this provides the following equivalent norm:

[l = Y [+ A2 lurdfey.0) + l9wuel iz 1.1y] -
kelN

5.2 Limiting absorption solution

Recall that we focus on the case w = 0. It has been observed in [50] that the equation of problem
(5.1) with r(y) = 1 and L = 27 can be solved using the classical Fourier’s expansion. This leads to

solve the very well-known modified Bessel equation:
—x0y (xd.a) + (kx)*uy = X fi. (5.2)

A feature of this ODE is that it is singular at the point x = 0. A general solution of the homogeneous

equation can be written as

ap +Ip(kx) + by 4 Ko(kx) if x >0,

u(x) = ,
a _Ip(kx) + b _Ko(kx) if x <0.
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However, the two boundary conditions do not provide enough equations to close the problem,
i.e., to completely determine the coefficient gy ;. and by ;. Thus, the aim of this part is to derive a
new equation in order to “glue” together the solutions on either side of the point x = 0. Like in
chapter 4, we proceed by introducing small absorption and then letting this absorption tend to 0.
This approach is common in literature, for example Campos Pinto and Després used this method
in [14] to extract variational relations.

Therefore, we look for a solution u of (5.1) such that it is also the limiting absorption solution,
i.e., u the limit in some sense of ("), as v — 0+ and u" solves the following problem.

Find 4" such that

—div(x(y)(x+iv) V") =r(y)f in Q,

u=0 onT, uT), G3)

u"(x,0) = u"(x, L), (r(y) (x+iv) ay) u"(x,0) = (r(y) (x +iv) ay) u'(x,L), x€(-1,1).
Notice the change of source term f = f/r € L?(Q), in order to simplify the computations below.
One can prove via the Lax-Milgram theorem that this problem is well-posed in H!(Q).

5.2.1 Solution with absorption

The first result of this part consists in a precise description of the solution with a small absorption
v>0.

Proposition 5.2.1. Let u” € H'(Q) be the unique solution of the problem with absorption (5.3).
Then, there exist (u%)k C H'(~1,1) be such that u"(x,y) = Y reN w (X )(y) with

ul(x) = af + b log (x + iv) + Lx log (¢ + iv) fo()dt + log (x + iv) Jox b,
and, fork > 1,
w(x) = ally (A (x + iv) — BYKy (Ag (x + iv))
— Iy (M (x +iv)) Lx Ky (A (t + ) fil)dt + Ky (A (x + iv)) Lx Iy (A (t +1v)) fr(H)dt,
where aj, and by are given below, see (5.8), (5.9), (5.10) and (5.11).

Proof. Easy manipulations on the problem (5.3) allow us to rewrite it under the form:

X +iv

=0y ((x +iv)o,u") — d(rou’) = f. (5.4)

Since the eigenvectors (i) of the operator —r_lay(ray-) constitute a Hilbert basis of L2(0, L), we
are allowed to decompose u¥ € H}(Q) and f € L2(Q) as

W y) = D u@nG).  f@y) =Y. iln®).
keN keN

Then, the equation (5.4) can be written as a system of ODE parametrized by k € IN:

— 9y ((x +iv) 0,1]) + /113 (x + ) = fi, in (=1, 1),

(5.5)
ug (1) = w)(-1) = 0.
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The general solution of these equations is written as
. v,0 v. vl v, V.2
u(x) = “k (x) + (%), with " (x) = " (x) + b *(x), (5.6)

where uZ’O is a solution of the homogeneous equation and 7 a particular solution. The solution
of the homogeneous equation is a linear combination of a fundamental pair of solutions u;;’l and
uZ’z, and the coefficients aj and b} are computed using the boundary conditions. As a memento,
the Wronskian ‘W/{uZ’l, u,t’z} of this pair of solutions can easily be computed (see [51, (1.13.5)]),

and the fundamental pair will be normalized so that

W{ Zl, uzz}(x) = u,t’l(x)axu;;’z(x) - axuk (x)uk (x) =

5.7
x+iv 5.7)

With the change of variable z = (x + iv), (5.5) becomes a modified Bessel equation [51, §10.25]:

20, (20,u) + (M2)’ ug = 2.

Therefore, for k > 0, the basis (uZ’l, uZ’z) of solutions of the homogeneous equation associated to
(5.5) are

uy'(x) =1, u(‘)/’z(x) = log(x + iv), k=0,
w') =L M(x+i),  wi(x) =Ko (qg(x+i), k>0

One can consult [51, §10.25] for the definitions of the modified Bessel functions I and K,. We
consider here the principal value of z = log z and z — Kj(z), with a branch cut at (—oo, 0]. The
Wronskian of the pairs is (5.7), see [51, (10.28.2)]. The computation of a particular solution uses
the variation of parameters method (see e.g., [51, (1.13.10)]). Then, particular solutions can simply

be written as

< w
AV ol
(%) =y, (X)L {“Zl’ vz}()<t+ fk() o (x )J Wl

k >

( ) (t + lka(t))

) j 20 fi(t)dt - (x>J a0 o,

where the value of the Wronskian (5.7) has been used. Next, using the homogeneous boundary
condition allows to compute the expected values of @ and b;. In the case of k = 0, we obtain that

uy(x) = ap + by log (x +iv) + Lx log (¢t +iv) fo(t)dt — log (x + iv) J:C fo®)dt,

. 1
b= lmg(i—jlv) [log(—1 + iv) — log(t + iv)] fo(t)dt, (5.8)
0 -1
1 0 log(1
by = Aig L log(t + iv) fy(t)dt — L fo®dt - %{w) J So@®)dt, (5.9)

o = log(—1+iv) —log(1 +iv) =i (m — 2arctan(v)).
Recall that in the case of k > 1, we have
u(x) = ajIy (A (x + iv)) = b Ky (A (x +iv))

— I (A (x +v)) L Ko (A (¢ + v)) fil)dt + Ko (A (x + i) JO I (A (¢ + v)) fil(t)dt
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Like in the case k = 0, the coefficients a; and by are then computed using the Dirichlet conditions
at x = £1:

Ko 41 + iv)) Ky M(=1 +iv)) (!
Ay _
Ky ()Lk(l +iv)) L (Ak(—l + iv))
_ N
. ; 1
Ko (A(1 + W))AIS M(=1+1iv)) I Qalt + ) filt)dt
k 0

L (Ak(l +iv)) Ky (Ak(—l +iv))
+ AZ

To (1 + ) o =1+ )
L Jrzv))Ajv< (=1 +iv)) L Ko ((t + ) fi(£)dt

r = Ko (A1 + i) Iy (A(=1 + iv)) — Iy (4(1 + iv)) Ky (Ak(=1 + iv)) (5.12)

vV _
ak—

Iy (At +iv)) fi®)dt
' (5.10)

1
|| KoOute+imp it

by =

0
L Io Okt + iv)) filt)dt (5.11)

Finally, it is easy to check that u € H'(-1,1) for allk € N and v > 0. O

Remark 5.2.2. Since the functions uz’l are smooth for any values of v > 0, the integration bounds
of fx u,‘é’z frdt do not really matter, and have been chosen in order to facilitate the computations.
On the other hand, lim,,_, u,t’z is not smooth at the point x = 0, which is the reason why the
lower bound of fxui’l frdt has been chosen in order to compensate the singular behavior of u,Z’z.

Remark 5.2.3. With the identities from [51, §10.34], we have for any a,b > 0,

Io(—a + lb) = Io(a + lb), (513)
Ko(—a +ib) = Ky(a + ib) — inly(a + ib). (5.14)

Then these two identities can be used to reexpress @ and by as:

. 2 A1
W Iy (N +iv)) filt)dt
k -1
inKo (41 +iv) I k(1 + ) 7
Ky (1 + i) Iy (41 +iv))
_ 7

vV _
ak—

I (Nt +v)) filt)dt

0 1
(L Ko Ot + ) fl)dt + j Ko Ot + ) fk(ndt) ,

0
(5.15)

= Ko Qa1+ ) |y (41 +v) Jl
-

AV Iy (et + ) fiele)dt
k 0

. Ko 41 + iv))ly (41 +iv)) (°
Ay 5

. 2 0 1
_ Do+ M (j Ko G+ A3+ [ K G-+ i) fk(t)dt)
Ak -1 0

Ay = illy (41 + ) + 2i1m (Iy (T + D)Ko k(1 +iv))) . (5.17)

Io Ot + iv)) fiul(t)dt (5.16)

In spite of their apparent sophistication, these formulas are easier to manipulate and estimate.
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5.2.2 Solution without absorption

Next, it is natural to define the limiting absorption solution at a point (x, y) € Q\ {0} x (0, L) as
+ — 1 %
u*(x,y) k%qvg& ().

Then, as noticed earlier in this paragraph, uZ’z does not converge toward a smooth solution. This
is due to the fact that z — log z and z — K;(z) are not entire functions ; the branch cut of their
principal values is (—oo, 0]. Therefore, as v — 0+, the identity (5.14) is important to consider. In
particular, for x # 0, we have

lim Ky(x + iv) = Ky(|x]) — inly(x)1cp-
v—0+
Then, it is natural to extend the definition of K, to the negative real numbers as

Ko(x) = Ky(x) if x >0, (5.18)
o= Ko(—x) —inly(x) ifx <o0. .

It is worth noting that this is the standard convention adopted by mathematical software. Another
useful property is the parity of I): I(x) = I)(—x) for all x € R. Finally, I,(x), Ky(x) > 0 for all
x> 0.

Lemma 5.2.4. The formal limit of (u"),~o is u™ = Y pen Uy Yk with

X

4t () = bt (log x| + inlco) + j

X
1 (log |t| + irl;q) fo()dt + (log x| + inlcq) L fo(H)dt,

ug (x) = af Iy (40 = b Ko (40 = Iy (A4) L Ko () fi(t)dt + Ko (Ax) L Ip (Ait) fiet)dt,

and where

1
bi = J 1log It fo(t)dt,

Ko(4)* Jl Ko() [* Ko(A) [
+ 0\ Ak 0\ 0\
a = ——— Iy(A4t) fr(H)dt — - Ky(JAxt) fi®)dt — J Iy(A4t) fr(H)dt,
S 2 )y OV b (i) |, Kot i oG )y oW bj
Ko(&) (! 1 (!
b = 00 [ nnfiod - L | Kl o
lﬂIo(Ak) 1 )
Proof. The formal limits are easily computed with the help of
lim log(x + iv) = log |x| + in1,<, lim Iy (A(x +iv)) = Iy (A4x),
v—0+ v—0+

vl—i>I(l;l+ Ko (M(x +iv)) = Ko (Ax) = Ko (Alx]) — im Iy (Ax) Lye<os

The limits of aj and by are straightforward, and the limits of a; and b} are computed using (5.15)

and (5.16) respectively. O

In the view of the structure of u,':, we define

b (log |x| + irl,) ifk =0,
et () = B Ky () ik > 1,

+,0
k
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and

X X
J (log [t| +iml;<) fo(t)dt + (log |x| + i7r]lx<0)J. fo)dt ifk =0,
1 0

Iy () | Ko Qi) 0t + Ko O [ 1o Qi) it itk > 1,

so that uf = u,j’o + 1. It is easy to check that u,:r’o is a solution of the homogeneous modified
Bessel equation (5.2) modulo the change of variables, and % is a particular solution of the same
equation. This particular solution satisfies the following proposition.

Proposition 5.2.5. u" € L2(Q) and out € LA(Q).

This proposition relies on the following lemmas based on the asymptotics of modified Bessel

functions.

Lemma 5.2.6 ([51, (10.25.3), §10.30]). The modified Bessel functions satisfies

I(z) ~ 1 Ko(z) ~ —log(2)
z—0 z—0
Z
I(z) ~ ¢ Ko(z) ~ Jﬁe_z,
z|>+e0 /272 lz|>+00 \ 22

for|argz| < n/2 — 6, for any § > 0 arbitrary small.

Then, the following lemma allows us to estimate the integrals and coefficients a’, b that are

involved in u,j.

Lemma 5.2.7. Let f € L?(0,1) and k > 1. For all x € (0,1) such that 0 < Ax < 1, we have

) 1 e
J, neuos@a = o (i), |, Ky = @( 3%’”).
For all x € (0,1) such that Axx > 1, we have
x e/lkx 1 e—/lkx
J, swosoal = o( Tz i) J, ®at 0] = 0( S Wiz

Proof. In what follows, a < b means that there exist a constant C > 0 independent of x and k such
that a < Cb. Firstly, since K, € L?(0, %) and I, € L?(0, 1), then for x € (0,1) such that 0 < A;x < 1,
we have with the help of the Cauchy-Schwarz inequality and change of variables

1/2

1 A 1Kol L2(0,00) 1Al 2
1 0ll22(0,00) 1112(0,1
| Konrroa] < (7 [ Ko<t)2dt) Wisge < -,
x k Jx \//Tk
and
X 1 Akx 1/2
JO L(A) f(£)dt| < (/l_k L Io(t)zdt> I Az200.0) < Hollzco.1) VX1 2o, -
On the other hand, for x € (0, 1) such that 4;x > 1, we have
1 +oo 1/2
1
[ K s@a < = [[ECR T
X ﬂ KX
+00 1/2
1 J' e—2t e—/lkx
< — —dt| Az S 1A z2¢0.1) 5
\//Tk P L%(0,1) Ak\/} L%(0,1)
kx

82


https://dlmf.nist.gov/10.25.E3
https://dlmf.nist.gov/10.30

5.2. Limiting absorption solution

e

’ 2t
and, using the fact! that flx ert <

. Aox 1/2

1
JIO(Akt) Fdt| < \/7 J L@t | Az
0 k\o

1/2

62t e)th
| St Wion s £= M-

1

O
Remark 5.2.8. Notice that the behavior of L: Ko(Agt) f(#)dt is optimal in the sense that
Ve o Ko(he) f(0)dt
. feilzl(po,n I Az200,1 = Kol
This can be easily check by computing the limit of the above quantity with f(¢) = Ky(Axt).
A direct corollary of the asymptotics of the modified Bessel functions is the following.
Lemma 5.2.9. We have, fork > 0,
af = @(ﬁ i zor 1)), by = @(i nre 1>> - (5.9)
A : N ’

Proof. Using the expressions of ¢ and b\ in Lemma 5.2.4 and the two Lemmas 5.2.6 and 5.2.7, we
directly have

'{k ” ’k” 2(— 'Lk Ak

+ —4), € _2) L3(-1,1) _21, € e

| | S /lk ” k" 2(-1.1 k € k ” k" 2(0,1 S ” k” 2(=1,1)>
G 1> € AkJL( 1) TE . Ak]L(,) A Jkl2(-1,1)

| fil2-1,1) B | fil 21,1

b] < e e | +
k1S pRRL R

d

Proof of Proposition 5.2.5. According to paragraph 5.1, showing that u™ € L2(Q) consists in bound-
ing from above

2 2
Z(l + ’11%) ||u;j||Lz(_1,0) , and Z(l t Ali) "uIJcr"L?(oJ) :
keN keN

Estimation on (0,1): We first estimate ﬁ,j. Using Lemmas 5.2.6 and 5.2.7, the first part of ﬁ,j is
estimated as

1 2
)

1
zo(akx)j Ko(ut) )| dx

1/ 1 2 1 1 2
- f Ioukx)j Ko(a) fu(t)dt dx+j () j Kou) ful)dt| dx
0 x 1/ x
V2 flzon [ U | hex g 2 1 fdZaen
SJ +J e o] dx s —5—,
0 A 1| X Al 22

Q2 2 2t /g2t 2x"
'Notice that [;° Sdt= [e—] +[ >dt so that N Sdt< =
1

2t
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Repeating the same argument for the second part of 12,': gives the same estimation, which results
in
2
2 ”fk”LZ(—l,l)
L%(0,1) ~ 2
/lk

if

Next, in order to estimate u,j’o, we use Lemma 5.2.9, so that

2 2
o 6_2/1’“ ) 1 ) ”fk”LZ(—l,l) 1 9 ”fk"Lz(—l,l)
’ < - < ——
[ oy < 7 Vilhroan || mouiaxs | e s =
Then, summing up the last two equations gives that (1 + A2) Hu,j”iz(o p s fk||iz(—1,1)’ and the
result holds on (0, 1) since f € L2(Q).

Estimation on (—1,0): We can no longer estimate ﬁ]j and u;’o separately on (—1, 0) because of
the apparition of terms like

1 x

b Ip(Aex), Io(/lkx)J Ko(Alt)) fie@)dt, and  I(A4x) L L(At) fir(®)dt,

which do not behave nicely as k — +oco. Therefore, using the expression (5.18) of K, we have for
x € (—1,0):

1
u () = (a;; + | Kb+ mb;) o) = b Ko2ex)

(5.20)
X X
—Io (Akx)J X Ko(IAxt) fiet)dt + Ko(kaDL Iy (Ad) fi(£)dt.
Then, it is easy to check as in Corollary 5.2.9 that
1 1 _
. Ko(Ae) M
J Ko(AtD fi(Odt + imb = =22% J LD fi(Hdt = 6 (e— I LZ(_M)) .
-1 (&) ) Ak
Therefore, estimating u,j as before leads to the expected result. O

Although u™ € L?(Q) is expected, ayu+ € L?(Q) is not. Indeed, as noticed in Chapter 4, the

natural norm of the problem is

1/2
( J |u|2dx+J 1x] |Vu|2dx) , (5.21)
Q Q

which a priori does not control the L?-norm of 8yu+. On the other hand, the solution is not regular
along the x-direction. To see this, it suffices to consider f € L?(Q) such that f(x,y) = f(x). With
asuch f, fy = fand fi = 0 for k > 0, which leads to a tensor-like example like the one exposed in

section 4.1. Moreover, in the view of Lemma 5.2.4,
[ Il ovulax = o
Q

due to the presence of the logarithm. Notice that this behavior is independent of whether the

support of the source term touches the interface or not.

Remark 5.2.10. On the other hand, the behavior of the source term has an influence on the
regularity of the solution. For example, assume that the support of fis a subset of Q\ (=1, 1)x(0, L).

Then, the estimation by can be significantly improved, see next section.
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5.3 Regularity matters

5.3.1 Regular and singular parts of the solution

As noticed in the previous paragraph, the derivative of the solution d,u* is not regular. This is
due to the logarithmic behavior of its component u;. Indeed, in view of Remark 5.2.2 and the

behavior of K near 0, we can split u,‘: in to parts u,‘: = u]j,sm gt u,:re g with

u,tsmg(x) = b} (log |x| + irly<p),

u,j,reg(x) =y (x) — b (log |x| + imlcp).

Therefore, it is natural to define the singular part of the solution as:

U6, ¥) = g7 (log x| +inleso),  with  g* ()= Y Bi(y),  (5.22)
kelN

and the regular part as

Wog(x,y) = kZ U e COVRD)- (5.23)
€N

Let us give the following two regularity results.

Proposition 5.3.1. Given f € L2(Q), it holds that g™ € Hrl/z(Z). In addition, g+"Hl/2(Z) <
I falzz(q)-
Proof. This is a direct consequence of Lemma 5.2.7, and Remark 5.2.10. O]

Proposition 5.3.2. Given f € L2(Q), axu;’eg € L%(Qj) for j € {p,n}. In addition,

+
Ixthreg| () =

I falzz(o)-

Like for Proposition 5.2.5, we need some results about the asymptotics of the modified Bessel
functions. Recall that Ij(x) = I;(x) and Kj(x) = —K;(x).

Lemma 5.3.3 ([51, §10.30, (10.25.3), (10.31.1)]). The modified Bessel functions satisfies

z 1 z
I ~ =, Ki(z)—-= ~ 21 ,
1(2) z—0 2 1(2) z z—0 2 Og(Z)
et To_
L(z) ~ , Ki(z) ~ —e %,
" oo 27z B ot \ 22

for|argz| < m/2 =8, for any § > 0 arbitrary small.

Proof. The derivative 4, is easily computed inside Q), j € {p,n}:

1
axu,: reg(x) =af Ay (Ax) + b Ay ( Ky (Ax) — Ec)

— Al (Aix) L Ko (At) fiet)dt — AkKy (Ax) L Iy (Ad) fi(£)dt.
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Estimation on (0,1). Most of the integrals can easily be bounded like in the proof of Proposi-
tion 5.2.5, except

1/
)

if one uses naively the Lemmas 5.2.7 and 5.3.3. Fortunately, the Hardy’s inequality [52] allows us
C
to conclude. Firstly, there is a constant Cx, > 0 such that K;(x) < % for all x € (0,1). Then,

1/
)

Next, using the Hardy’s inequality gives

1/
)

2 2

||fk||L2(o,1)
Jx

1/ X
dx SJ
0

MKy () L Iy (M) fie(t)dt

2 2

1/ 2

MKs Qi) | 1 Ot e 1], o) i) ox

dx SCKIJ
0

X 2

2Ky () j I (hd) fi@)dt

1/ )
0 dx <4, | I O A dx

2 2
< 4Ck, 1ol =01 ”fk”L2<0 i) '

o

These estimations lead to Haxu;;re gH < | filz2(0,1)- Since the result holds for all k, we have

12(0,1)
Haxu;;gHL%(Qp) < I falizq) and oy, € LE(Q,).

Estimation on (—1,0). In the view of the expression (5.20) of u,;F on (—1,0), we have

1
. 1
8xu,j’reg(x) = (a]j + J_l Ko([Axt]) fil®dt + mb,j) L (4x) — b,j/lk <K1(|)ka|) — m)

My ) | Kol + Akl | 1o Q) i

Therefore, the estimations follows exactly like the previous case and 8xur+eg € 12(Q,) with the
bound 8xur+eg € LA(Q,). O

We proved that g* € H, / 2(2), which does not imply that dyug, g € L2(Q). Similarly, we did not
prove that 3yu;t3g € L2(Q). Therefore, u;reg may not have classical traces on the interface. Indeed,
this can easily be seen on the trace: using that Ky(x) + log(x) — log(2) — y as x — 0+, where y is

the Euler-Mascheroni constant, we find that

1
. T + o+ a4+
xll)r(r)1+ U reg = xlir(r)l_ U rog = B — b; (log Ak +log(2) —y) + J.O Ko(At) fie(t)dt.
Then, using the estimation of a,;F and b,ér for Lemma 5.2.9, which is optimal, see Remark 5.2.8, the
dominating term is b,': log A, and we can only conclude that
1/2—¢

u;;g 5 € H'™ (%), Ve>o0.
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5.3.2 Going back to the jump of solutions

On the other hand, given that the limits above coincide on each side of the interface, one could

argue that the jump between ufeg and u;g‘ o vanishes. Notice this holds in particular if the

Q
P
source term goes up to the interface, i.e., supp fo n 2 = @.

Going back to Assumption 4.1.2, the Sobolev space Q = Hll/z(Qp) X Hll/z(Qn), see (4.6),
dissociate Q, and Q, in order to ensure completeness results. It is in this Sobolev space in which
the sesquilinear form of the problem is continuous and in which the regular part is measured. Then,
there is a priori no relation between the two parts of the solution at the interface. Consequently,

a weak notion of jump for functions in Q is addressed in Chapter 6.

5.3.3 Refined regularity estimation

From the above considerations, we see that the key quantity of the regularity analysis is the
behavior of the integral

1
|| ®otepcoar (520

Thus, it appears that imposing conditions on the source term may improve the regularity of both
the regular and the singular parts. A very simple way to eliminate the last integral (5.24) is to
consider fo € L2(Q) such that every fi are odd for all k € N sufficiently large. However, this
takes advantages of the symmetry of the domain, which is not guaranteed. Another simple and
more realistic condition is that the support of the source term is far from the interface. Actually,
this is the behavior of the source term in the original problem introduced in Chapter 4.

Therefore, the results of this section are supported by the following lemma, which is an
improvement of Lemma 5.2.7.

Lemma 5.3.4. Let f € L%(—1, 1) be such that there is x > 0 such that supp f n (—x, x) = @. Then,

(ﬂ"l I )

=0 — |/l .

A \[l L%(0,1)

Proof. Since A — +o00 as k — oo, it suffices to apply the second part of Lemma 5.2.7 as soon as
Ml > 1. O

1
| Kotuensionae

Then, implementing the previously outlined approach significantly enhances the behavior of

bt = (—e_/lkl IA )
0 2 ,
k )Lk\[l L0

whose consequences are summarized in the following proposition.

b,': since

Proposition 5.3.5. Given f € L2(Q) be such that supp f n = = @, we have g* € HL(Z) and
Uplpg € HX(Q). In addition,

iy * [weel o) < olizo-

In that case, the regular part has more than a vanishing jump at the interface, since it also has
a classical trace.
It is legitimate to look at the case w # 0. However, the result above cannot be straightforwardly

extended to the case of w # 0 via a bootstrap argument since even if the support of source term is
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disjoint with the interface, this is obviously not the case for a solution of the problem. Nevertheless,
it is possible to replicate all the approach now with w # 0. In that case, a Whittaker equation
appears instead of a modified Bessel equation. Its resolution provides solutions with very similar
behavior to the modified Bessel functions, in particular the logarithmic behavior of the singular

part.

Remark 5.3.6. In the case of supp f n X = @, according to Lemma 5.2.7, the exponential behavior
of b{ actually leads to g* € B pei(%).

5.4 Limiting absorption principle

Since both the formal limiting absorption solution ™ and the solution with absorption u" belong

to L%(Q), one can verify the following theorem.

Theorem 5.4.1 (Limiting absorption principle). The following convergence holds:

Q@
— > u .
v—0+

uV

The proof of this theorem relies on the following two lemmas, in which actually all the
mathematical difficulties lie.

2
Lemma 5.4.2. The seriesv — ||uV||]%2(Q) = D keN Huz”Lz(_l 1 is normally convergent forv € (0,1).
Lemma 5.4.3. Forallk € N,y — u]zr asv — 0+ in L*(—1,1).

. 2
Proof of Theorem 5.4.1. It suffices to prove that the series Y e |4y — 4 ||L2(—1 1) goes to 0 as v —
0+. Obviously, by Lemma 5.4.2, this series is normally convergent for v € (0, 1). Therefore, we

can swap the sum and the limit symbols. Then, we conclude with Lemma 5.4.3:

v—0+ v—0+

. 2 _ 2
lim Z g — uf ”Lz(—l,l) = lim [y —uf ”LZ(—1,1) =0.
keN keN

O

Both previous lemmas need the following estimations of the modified Bessel functions with

complex argument.
Lemma 5.4.4. We have forallx >0 andy € R
o (x + iy)| < Ip(x), and Ko (x + iy)| < Ko(x).

Proof. Both these inequalities use the integral representation of modified Bessel functions, refer
to [51, §10.32]. Therefore, we have

T T
|IO (x + iy)l < l J ‘e(X+iy)C059| de = l J excosede — Io(x).
T Jo T Jo

The inequality on K, follows in the same way. O
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5.4. Limiting absorption principle

Proof of Lemma 5.4.2. The proof consists in estimating ||u%|| L2(-1.1)° Like in the proof of Proposi-
tion 5.2.5, we separate the study over the intervals (—1,0) and (0, 1). Since this study on both
intervals follows the same process, we will only describe it on (0, 1). Therefore, we have

||uz||L2(0’1) < lag] Ho(Alx + v)z2g0.1y + 1Byl 1Ko (Al + i) z20.1) + ||ﬁ%||L2(0,1) .
Firstly, Lemma 5.4.4 yields
1 lo(Ak(x + iV))||L2(o,1) < ||Io()th)||L2(0,1) ) and | Ko(Aglx + iV))||L2(o,1) < ||K0(/1kx)||L2(o,1) .

With this observation, it suffices to show that a}é and b}; follow behavior similar to the ones
described in Lemma 5.2.9, and similarly for "LAI;;” 12(0.1) with ||1ft,2L || 12(0.1)° The latter is simple since it
follows the proof of Proposition 5.2.5, for example

1 1 2
L Iy (A(x +iv)) J Koy (At + v)) fr(®)dt| dx

1
<)
0

as for Proposition 5.2.5. Therefore, we have |} 120.1) S /1]:1 | fil2(0,1)- In the view of the expres-

1 2
I O J 1Ko () fild)] it

X

dx <

5

I filZ20.1)
2

k

-1
sions (5.15) and (5.16) of a; and by, we first estimate (AZ) , more precisely, we compare it to
A]g = inly(A)?. Let us prove that

i]TIO (A)Z
1%

k

(/L V) € [Al; +Oo) x [O’ 1] =

is bounded. Using the asymptotics of modified Bessel function, summarized in Lemma 5.2.6, there
is C > 0 large enough such that for all A > C and v € (0, 1), the function above is bounded on
[C, +o0] x [0, 1]. On the other hand, this function is continuous on the compact set [, C] x [0, 1],
which implies that it is bounded on this set, and so on [A, +o0] x [0, 1]. Afterwards, with the
expressions of alz and bz, Lemma 5.4.4 and the last boundedness result, we retrieve the behavior of
Lemma 5.2.9, uniformly with respect to v € (0, 1):

A

e 1

il = == flrz-1py. and B S ——=fidzry- (5.25)
k Ak

Finally, like for Proposition 5.2.5, it follows that ||u%|| 201) < C/llzl | fil 20,1y Where Cis independent
of v € (0,1) and Ay. O

The estimations above allows us to show the Lemma 5.4.3.

Proof of Lemma 5.4.3. Using Lemma 5.4.4, we easily find g € L2(—1, 1) be such that | ()] < gi(x)
for v € (0, 1). Finally, since u(x) — u]':(x) as v — 0+ for almost every x € (0, 1), the Lebesgue’s

dominated convergence theorem concludes the proof. O
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5.5 Conclusions

The observation of the present chapter justify the use in Chapter 6 of Assumption 4.1.2 requiring
a source term with support disjoint from the interface. This also shows that assuming g € ng,(z)
is too restrictive.

On the other hand, in the case of a general source term, the fact that the amplitude g* of the
singular part (5.22) only belongs to Hy / 2(Z) suggests that it does not trap all the singularities
of the problem. An idea would be to consider an amplitude of the singular part with more
degrees of freedom, for example, a lifting g+ € HI(Q) of g*, with a singular part now equal to
ﬁ;ng(x, y) = g7 (x,y) (log |x| + irl,«(). The counterpart of this approach is that the regular part
would be less regular since Viig ¢ L%(Q) but rather X Vilyeq € L2(Q) for all ¢ > 0. Then, the

following assumption would be more pertinent.

Assumption 5.5.1. The family of solutions (u"),~o of the problem with absorption converges in
L%(Q) to the limiting absorption solution u™ € L*(Q)

LY(Q
u’ LO)» ut. (5.26)
v—0+

Moreover, u™ can be represented as

+ _ ~t ~ 4
U = Upgg + Uiy e

where the pair (i, ﬁ;{ng) is such that f‘rJreg|Qpn € Hll/Z(Qp)n) and a;.,,g(x, y) = g7 (x,y)S(x) with
g* € HpeQ).

Appendix

5.A Study in another case

We consider in this section the problem (5.1) with a(x, y) = x, @ > 0, and fq € L2(Q). Asin § 5.2,

we add some absorption v > 0, and we seek the solution of

find v’ € H(Q) such that

—div ((x + iv) Vi") — 0*u’ = fo in Q,
u'=0 onl,ul,
u(x,0) = u"(x, L), ((x +iv) ay) u"(x,0) = ((x + iv) 6y) u(x,L), xe€(-1,1).

Since u” € L%(Q), we can decompose it onto (Y, see Definition 5.1.2, which leads to the
following equation:

—de ((x + iv)c?xu,t) +((x+ iv)/llf - a)z) u = fy, fork>0.

In order to get back to a known differential equation, we will use a substitution proposed in [51,

(1.13(iv))]. Firstly, we set z = x + iv, which yields

-9, (zou)) + (222 — 0*) ] = fi zeC. (5.27)
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5.A. Study in another case

Next, we focus on the substitution [51, (1.13.13)], which gives® wi(z) = z /(). This leads to the
equation

2w + (é + 2/1,‘3 - wz)wk = Jzfi.

Finally, we obtain with the substitution n = 2A4;z:

N (1/4 @ faa, 1) 1 f
Wk —=wWe=- k-
n V2

This is the Whittaker equation, cf. [51, (13.14)], with the parameters ( 0 ). The solution to

20
the associated homogeneous equation is given by [51, (13.14.2), (13.14.3)]. Therefore, the general

solution of (5.27) is written as
u(z) = ulg’v(z) + i (2), with u,(c)’v(z) = a,‘;u]i’v(z) + b%ui "(2),

and

2
u,i’v(z) \/T/hce_’lkzM (— - 7 1, 2/1kz) u]‘z"’(z) -2 Ake—/lsz(% v

1,21.z),
2N kz)

where M, U are the standard solutions of the Kummer’s equation, cf. [51, (13.2)]. The particular
solution & can be computed like in the proof of 5.2.1.

The major point of the chapter is the behavior of the homogeneous solution, as in Lemma 5.2.6.
This lemma can be easily adapted in the following proposition.

Lemma 5.A.1. The homogeneous solutions u,l’v and u,z’v satisfy

u]i)V(Z) ~ 1 r 1—w—2 uz’v(z) ~ —log(z)
\IZAk z=0 2 2/1]c k z—0 glz),

. 1_ o
u]i’v(l) (ZA]CZ)_A /Mk y elkz T ( 1 ) ( ) (ZA Z)_mﬁ/uk I (2 Zlk) e_AkZ
~ b - k - — >
J2dy v [0 [l 2 24 oo 2z
Ak

for|arg z| < 7/ — &, § > 0 arbitrary small. z — T(z) is the usual Gamma function, cf. [51, §5].

Proof. For the asymptotics with small argument, we use [51, (13.2.13)] and [51, (13.2.19)]. For the
asymptotics with large argument, we use [51, (13.2.4), (13.2.23)] and [51, (13.2.6)]. O

Let us make few remark about these asymptotics. Given z € C \ (—o0, 0], we have that

—o* 1 &)2 1
o) ——1, (-2 ——»r(—)z .
( kZ) k—+o0 (2 2Ak> k—+o0 2 \ﬁT

Therefore, we obtain a very similar behavior as observed in Lemma 5.2.6. Then, up to a renormal-
ization, most of the development done in this chapter could be iterated and should lead toward
the same results, in particular on the presence of a logarithmic singularity, the regularity of its

amplitude and the limiting absorption principle.

*Within the notation of [51, (1.13)], we set f(z) = z™" and g(z) = AZ — ¢’/-.
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CHAPTER 6

Mixed variational formulation
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6.3 Jump and technical results . . . ... ... Lo o
63.1 Weakjump . .. ... ...
6.3.2  Jump of the limiting absorption solution . . . .. ... ... ... ...
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6.4.2  Uniqueness of thesolution . . . . . ... ... . ... ... .......
6.43 Existence of thesolution . . . . .. ... ... ... ... ... ...

6.4.4 Discussion on the stability of the solution . . . ... ... ... .. ..

6.1 Problem setting

Let Q = (—a,a) x (0, L), with the notations of Chapter 4, v > 0 be an absorption parameter.

Consider the following family of problems:

find u” € H(Q) such that

— div((a + v)Vu") — ?u¥ = fy in Q,
(a +iv)ou’ +idu’ = fr onT,uT),
u’(x,0) = u"(x, L), ((a +iv) ay) u"(x,0) = ((0{ +iv) ay) u(x,L), x€(—a, a),

(6.1)



Chapter 6. Mixed variational formulation

where fo € L2(Q) and fr € LA(T, uT';,). Notice the slight difference with the setting from Chapter 4
due to the introduction of the volume source term f. The function a(x, y) € %ger,y (% R) is such
that a(x,y) > 0on Q;, = {(x,y) : x > 0}and a(x,y) < 00on Q, = {(x,y) : x < 0}. Therefore,
a(0,y) = 0.

As discussed in chapter 4, we introduce the singularity S(x) := log x| + iz1,(, the space of

“regular functions”
H{/,(Q) = fveL2(Q) : o' e LA(Qp}, je{p.n},

and Q = H11/2 (Q p) X Hl1 /2 (Qp), see (4.6). For this chapter, we make the following assumption
introduced in chapter 4.

Assumption 6.1.1. The family of solutions (u”),~q of (6.1) converges in L*(Q) to the limiting

absorption solution u™ € L?(Q)
LA(Q)
W —— ut. (6.2)
v—0+

+

Moreover, u™ can be represented as

+

— +
U™ = Ut U

sing’

where the pair (u;“eg, u;?ng

) is such that the regular part ufeg‘Q € Hll/Z(Qj) for j € {p,n} and the
i

singular part ugng(x, y) = g7 (y)S(x) with gt € H;er(Z).

Remark 6.1.2. This assumption is justified by the observations in Chapter 5, if the source term f

satisfies supp fo n 2 = @. Nevertheless, the content of this chapter seems valid even for source

term which does not vanish near the interface.

Remark 6.1.3. Given a(x,y) = r(y)x as in Chapter 5, we proved the limiting absorption principle
when the absorption is set as r(y) (x + iv). Then, notice that the absorption principle is set slightly
differently in Assumption 6.1.1, since it reads r(y)x + iv.
We identify the function u;;g with a pair u* = <u;;g‘ o u;zg‘ o ) € Q. For generic g(y), we
P n

use the notation sy(x, y) = g(¥)S(x) as introduced in (4.7). First, u" is one of the solutions of the

problem
find u € L?(Q) such that
— div(aVu) — 0*u = fq in Q, (63)
6.
Qdyu + idu = fp onl,ul,

u(x,0) = u(x,L), (adyu(x,0) = (ady)u(x,L), x € (-a, a),
see proposition 6.2.1 below. The aim of this chapter is to find and analyze a variational problem
for which u* = (u', g*), as defined in assumption 6.1.1, constitutes a solution.
Letu € H, /Z(Q ;) be such that div (aVu) € L2(Q ;) and periodic boundary conditions are imposed
between {(x,y) : y =0} and {(x,y) : y = L}. Then, Green’s identity gives for v € H11/2(Qj)

—J div (aVu) wdx = J aVu - Vvdx — J ad,uvds.
Q. Q. T

J 7 J
Given the absorbing boundary conditions of the problem, the sesquilinear form associated to the
problem (6.3) which operates on the regular part is

bgf::%(u, V) = Z J (aVuj Vv — wzujVj) dx + MJ uvds, u,veQ. (6.4)
jetpny 74 b
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6.2. Construction of a mixed problem

Next, let g € H;er(Z) be such that div (ang) € L2(Q)'. Unfortunately, Green’s identity cannot

2 2
be applied since a‘axsg‘ ¢ L1(Q). However, we have 0, (aaxsg) € L3(Q), (x‘aysg‘ e L1(Q), and
these two quantities involve only g and its derivative d,g. Therefore, integrating by parts only

along the y-direction gives, for v € Hll/z(Qj)

- J div (ang) vdx = — J Oy (a&xsg) vdx + J ad)sgdyvdx.
& 2 &
Notice that the two last integrals are well-defined for all g € ler(Z) With this observation, one
can define a variational formulation of (6.3) with g € per(Z) by integrating by parts only along
the y-direction, to be compared with g € Hﬁer(Z) in [49]. Then, multiplying (6.3) by a test function
v € Q, integrating by parts along the y-direction, and taking into account the absorbing boundary
conditions of the problem, we obtain the sesquilinear form associated with the problem that

operates on the singular part s,. For g € per(Z) and v € Q, this sesquilinear form is given by:
bglln)g(g, V) = Z JQ (aaysg% + (—ox(adysy) — wzsg)Vj) dx + L (adysg +idsg)vids.  (6.5)
Jjelpn} 75 J

Hence, the variational problem associated to the problem (6.3) is

find (u, g) € Q x Hp (%) such that
40 ) ) (6.6)
reg(u V) + bsmg(g’ V) = 8 (V) Vv € Q:
where the left-hand side is for v € Q
(D) = J fovidx + J fivids. (6.7)

jelp.n} 8

Unfortunately, the previous problem is not well-posed. As a matter of fact, the operator Breg Q-

(1)

Q’ associated to brg is invertible, see [49, propositions 4]. As a consequence, for all g € per(Q),
there is a unique u(g) such that for all v e Q

bea(u(g).v) = (W) - by (g.v).

A natural way to recover the well-posedness is to add a new condition to the problem. Therefore,
following the approach of [49], the subsequent section is devoted to establishing this new condition,

leading to the formulation of a mixed variational problem.

Remark 6.1.4. It does not seem possible to further reduce the regularity of g compared to [49]
because its first derivative d),g appears in the first term of (6.5).

6.2 Construction of a mixed problem

6.2.1 Properties of the limiting absorption solution

In order to derive a new problem solved by the absorption solution u™, we show in this paragraph

some simple properties of u™. Let us introduce the variational formulation for (6.1):

find v’ € H(Q) such that

bv(u, V) = f(l)(v), Vv € Hl(Q) (68)

'Notice that this implies g € H*(X).
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with
b'(u,v) := J [(a + iv) Vu - Vv — w®1] dx +iA Z J uvds, (6.9)
@ jetpnt 'L
and

f(1>(v):I fowdx + J frvds. (6.10)
Q

Ly
Proposition 6.2.1. Letut = (u*,g") € Ox Hll,er(Z) be governed by the assumption 6.1.1. Then, for
allv € Q,

g (ut.v) + b (g7v) = (0 (). (6.11)
Moreover, u™ solves (6.3) in the sense of distributions.

The proof this proposition relies on two technical lemmas.

Lemma 6.2.2. Letv > 0, and u” satisfy (6.1). Under assumption 6.1.1, there holds

2

L
(o + iv)Vu —£—> aV(ut, +ul ).
0+ reg T Using

Proof. Until the end of the proof, we write || for the L2(Q)-norm and ||, for the L*(Q)-norm.
We split the proof into two steps.

Step 1. Proof that v|Vu'| - 0 as v — 0+. We test the equation (6.9) with v = ©” and take the
imaginary part of the resulting expression. This yields

2 2
vIVar|” + Auliaee ory) < ol el + Ll ol Iz or,)-
Then, using Young’s inequality, one obtains
2 2
vIVa'l” < [ falle'l + 1 el e or,y 18Iz or,) = A1 lz2q o)
1 2 21 2 2
< Ul T+ e iy + 2 W oy = Al uny
1
V| 2
< Vol + o= e, or,
Finally, thanks to assumption 6.1.1, |u"| — Hu+|| as v — 0+, and therefore v|Vu"| — 0.

Step 2. Proof that aVu’ — aVu™ in L?(Q). We will show that (aVu'"),¢p is a Cauchy sequence

for all ()N C RT, s.t. lirf v, = 0. Since we know that (u'"), and (v,Vu'?), ¢y are Cauchy
n——+oo

sequences in L2(Q), let us denote e,,, = u* — u'm and &,,,, = v,Vu'"» — v, Vu'n. Then, we want to

control aVey,,,.

For this we consider the difference of (6.9) written for v = v, and v = v,,, namely
b (u', v) — b'm(u¥m,v) = J [aVenn - Vv + i€y - Vv — 0P| dx + iAJ’ eymvds =0 (6.12)
Q Tl
»

We test the equation (6.12) with v = ae,,,,, which yields

J Ve, m|*dx + J [aVenm “egmVa + i€y, - (aVeyy, + e Va) — w2a|enm|2] dx
Q Q

+ i/lj aleyml® ds = 0
Tyl
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6.2. Construction of a mixed problem

Taking the real part of the above, and using the Cauchy-Schwarz inequality to bound sign-
indefinite terms yields:

JQ |aVe,,|2dx < JQ [|aVenm . m| + ’énm (aVep, + eana)‘ + a)2|a||enm|2] dx
< Vedoo laVenm| lenm| + 1€nml (1aVenm| + [Valoolennl) + @®lalcolénml®.
With the help of the Young inequality, we obtain the following bound:
laVenm < C(lewml + l€nml)

where the constant C depends on |a|e, |Vat|eo and w? only. Because v|Vu'| — 0 as v — 0+ and "
converges in L%(Q) as v — 0+, we conclude that (aVu'"),¢ is an L2(Q)-Cauchy sequence, and
thus converges. Evidently, its limit is aVu™; this follows from the following expression (which
allows to define the distribution aVvfor v € L%(Q) and « € C}(Q)):

aVu' = V(au") — u'V

We have that u"Va — u™Va in L2(Q); similarly, au’ — au™, thus, in the sense of distributions,
V(au") — V(au'). Finally, by the uniqueness of the distributional limit, we conclude with the
desired result. ]

Remark 6.2.3. Let O C Q be an open set such that ©n 3. = @. Since there is a constant Cp such that

la| > Cp > 0, the norms || H} ,(0) and [|g1(p) are equivalent. Therefore, previous lemma shows

that ' — u" in H'(0), and in particular, by continuity of the trace application, “V|Fp,, —>u
in L2 (T, ).
Let g € H;er (2). Recall the “singularity with absorption”

“Ir,,

sg(x,y) = g(y) log (x + ﬂ) (6.13)

defined in (4.8). We obviously have s, € H L(Q), ie., sg is not singular, but it approaches the

singularity sg as v goes to 0+, as can be seen in the following lemma.
Lemma 6.2.4. Given g € per(Z) the following limits hold in L*(Q) asv — 0+:

Vv v
5§ % 9y = Oy

(@ + iv)0ysy = adySg, Ox((or +iv)dysy) = (@Oysy).

Proof. By direct computation, we have

(a +iv) axs = g(y)r(y) r(i): l—:-/ v

) ivd,r(y)
o= 0o (x5 ) - 00
r(y)(9xax — &) + iv(dxa — x(y))

(x(y)x +iv)?

5

Ix ((a + iv)axsg) = gr(y)

so that the convergence holds almost everywhere. In order to use the Lebesgue’s dominated

convergence theorem, it suffices to check that all functions above are L-integrable uniformly
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with respect to v. Recall that we have a(x, y) = r(y)x + O(x?) in a neighborhood of the interface.
The following ratios are easily bounded:

. 2
a+iv oax —a

<1

X +iv (rx + iv)?
and the convergence holds for ( + iv)d,sg. On the other hand, we have

2

oy goyr | gl @y
|x|<a Jy r(rx +iv) yl T Ixl<a 1 4+ (g) y T =0
14
oa—r | (H)z dx |2
J J vgrx—.2 dx < J IgIZJ V—zdySvJ ——dy 0
wl<adyl = (xx +1iv) v Jixi<a rx\2 y T o0
1+(%)
This allows us to conclude about 9y, and 9y ((0{ + iv)o"’xsg,>. O

A natural corollary of previous lemmas is the following.

Corollary 6.2.5. Let v > 0 and u” satisfy (6.1). Under assumption 6.1.1, u’ € HY(Q) can be

decomposed as
v _ .,V Vv
U= Upeg + Sy

and it holds that
LA(Q) LA(Q)

v + . v +
w,, —— UL, and (a+iv)Vu,, —— aVu,,.
reg V—0+ reg ( ) reg V—0+ reg

Proof. By lemma 6.2.4, s§+ — sg+ and angﬁ — aVsg+ in L?(Q)-norm as v — 0+. Therefore, with
the assumption 6.1.1 and lemma 6.2.2, the result holds. O

Proof of proposition 6.2.1. First, because of assumption 6.1.1, the limiting absorption solution

u” = oy + 5§ satisfies

—div(aVu™) — w?u" = fq in D'(Q). (6.14)

Moreover, using the decomposition of lemma 6.2.5 and the fact that 8x(aaxsg) e L*(Q), we

conclude that

d* = —div(aVu™) + o (adysy) (6.15)
= —div (aVu;;g) — 9y (aaysg) e L%(Q).

Notice that div (aVurt,g) does not necessarily belong to L?(Q), so that the integration by parts must
be done carefully. Testing on Q, the equation (6.14) with v, € Cp;, , (ﬁp), using the boundary
conditions of (6.3) and integrating by parts yields (cf. (6.15), corollary 6.2.5 and the periodicity of

g):

J {aVishy - Vv, + 2549y, — 0y (0ysg+ ) Ty — 0 (g + 5p+ ) T} dx
QP

— | adyutvyds — (adpusey, YoV / =J vadx—FJ frvpds. (6.16)
Lp nlregVp < nlhreg P>(H;g,2(z)) HY ) o, P r, P
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6.2. Construction of a mixed problem

Here n = (ny, ny) is the outgoing unit normal from Q,,. Finally, it remains to show that aanufeg‘z =
0 and aanu;;g = fr —ad, — ik (u;;g + sg+) on T, see the boundary conditions of the problem (6.3).

Let ¢; € G4 ((—a,a);R), ¢; = 1 in the vicinity of 0 and ¢(x, ¥) = ¢;(x) be a truncation function
as in Definition 4.2.2 and its scaled version ¢.(x,y) = ¢ ()—gc , y). Integrating by parts as above with
Vp@e, we then have for all € > 0,

(wntig 1% >(H£!f =) Hy )

=— JQ {d+ Ve + ady(uy + s3) 0 (qogvp)} dx + JQ adsuy Ix(vpp,)dx.
p »
It suffices to consider the case ¢ — 0. The convergence of the first integral to 0 follows from
Lebesgue’s dominated convergence theorem and the fact that 9, = 0. Finally, as for the second
integral, we can estimate it as follows (where Q} = Q;, n supp ¢,):

< +

J;Y oty Vi Oytp, dx

J adyit 3, v, ¢ dx
o 5

U adyity dx(vype)dx
Q,

o Il ey Vo)

<”“P ”Hl/Z(Q;,) ‘VP”Hl/Z(Q‘;,) +lup HHl

Remark that there exists C; > 0, s.t. for all ¢ > 0, ||qog||H1/2(Q;) < (. Since, additionally, u;; €
1

Hll/z(Qp), we conclude that, as ¢ — 0+,

’ JQ adsuy Ix(vpp)dx| — 0.
P

Therefore, aanu;'ég‘z =0.
Let vy € G

per.y
problem with absorption 6.8, we have

( p) such that suppv, n X = @. Since u” = yy,, + s, g+ 18 the solution of the

v,dx +J v, ds
JQ fQ D ¢ fF P

» »
= J {(a +iv) Vu" - Vv, — wzu"@} dx + i J u'v,ds
2, Ty
= L} {(0{ + 1) Vitog - Vv, + (a0 + V) (9},524, - dyVp — Ox ((a +iv) 8xs;+) Tp} dx
»

_ JQ w? (ureg + s ) vydx + J [(a +iv) 8ns£r+ — i/ls:g’r;r] vyds + ik L UregVpds.

P P p

Combining the last identity with (6.16) yields

J AOpUyegVpds = {[aVurJ;g —(a +1iv) Vurveg] - Vv, + [aaysg+ —(a +iv) 8ysg+] Vp
T J Q
p

- [8 0Oy Sg+ ((a +iv) 8xs§+)] v = w? (u;g + St — Upeg + SZ’*) %} dx

+ [ fr — iAufeg — (o +iv) ans;+ - i/ls;+] v,ds.

.er
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Chapter 6. Mixed variational formulation

As v — 0+, the integral on Qp vanishes thanks to lemmas 6.2.2, 6.2.4, and assumption 6.1.1.

Obviously,

14(Ty)
(a+1iv) 6ns l)ts Ve a0y Sg+ — iASg+
+

and u}’eg‘rp - ufeg‘rp by continuity of the trace, see remark 6.2.3. As a result, we have

ady (u;;g + Sg+ ) + il (ureg +5g ) Jr.onT).

Hence, for all v, € cx ( ) it holds that

per.y

J {aVu,eg va + adysg+d vp Oy (ac?xs ) Vp — w? (u,eg +5g ) vp} dx
Q,

+ ilj (u; + sg)%ds + J Apsg+Vpds = J Javydx + J Jrvpds.
T Tp 2 Ty

Repeating the argument for v, € Cpe,., (Q,), we conclude that a similar identity holds true in Q.
By density of the functions Cp,,, (Q,) x Cher, y( ) in Q, we arrive at the formulation (6.11). [
Remark 6.2.6. The proof of proposition 6.2.1 illustrates that, for u € Hl1 /2(Q ;) such that div(aVu) €
L3(Q), adyuly, = 0 is a natural consequence. On another hand, for g € L2(2), we have aaxsg‘ =gr.

The “energy” localized near the interface 3. of the singular part is finite. Recall the L?(%)-
weighted norm |g], = (5, |g|2rds)1/2 and the associated inner product (-, -),.

Lemma 6.2.7. Let g € H'(Z) and let ¢ be a truncation function as in definition 4.2.2. Then the
following limit holds:
li VstlPpdx = gl 6.17
lim jQ Wusypdx = rgl? (617)

Proof. By direct computation, we have

80
r(y)x +iv’

Then, one can check that

a
@1(x) d
[ vosgPods = [ lgir ( [ ) dy —— rlgl?.
Q 5 _ v—0+

a(xx/v)2+1 v

dusy(x,y) = v >_ g’ (y)

%0 y) = g log (x TIm) ) aEx )’

2

whereas, using Young’s inequality and that
V]ayshl2pdx < ZVJ/
J,otoax <]

One can also characterize the “energy” localized near the interface ¥ of the regular part.

= 1,

v
r(y)x+iv

2 2
g
)

v—0+

) o(x,y)dx —— 0.

9,8(y)log (x + (—y)

Proposition 6.2.8. Let (u"), > 0 be a family governed by (6.1) fulfilling assumption 6.1.1, and
ng}ery (Q; R) be such that supp ¢ n (IpuTy) = @. Then the following limit holds:

2
lim vVu) dx =0.
v—0+ JQ ‘ reg‘ ¢
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6.2. Construction of a mixed problem

2
Proof. Firstly, remark that [, v ‘Vu}’eg‘ @dx = Im &, with

2
Ereg = JQ {(a +iv) |Vu‘r’eg’ ¢ - w2|u¥6g|2(p} dx.

Therefore, using that Vi = V(tregp) — tiregVep and that u” = w/,e + s is a solution of the problem
with absorption (6.8), one has

Eleg = JQ {(a + 1V)Vupeg - V(Wegp) — wzurvegu}’egrp} dx — JQ(O( + 1V)Vlyeq + UfegVepdx

= JQ fouyegpdx — JQ {(a +1)Vsg - V(egp) — wZSEuyegq)} dx — JQ(a + 1V)Vlyeq - UfegVepdx

= JQ foWegpdx — JQ {(a +1)9ySg Oy Wegp) — Oy ((a + iv)axsg,) Weg) — a)zsgu‘r’e g<p} dx
- J (@ + V)Viheg - WegVepdx,
Q

where an integration by parts in the x-direction is made in the last equality. According to lemma

6.2.4 and lemma 6.2.5, and the definitions (6.4), (6.5), (6.7) of the forms bﬁégr, bgl-ln)g and ¢, Ereg

converges as v — 0+ to

%ﬁég = f(l)(u+(p) — bgl.ln)g(ng’ u+(p) _ Z J aVuJ?L -u}rVgodx
Jjelpiny =%
= Sgé);(qu, ute) — Z J aVuj” - uf Vedx
Jjelpny =i

2
= JQ {a‘Vuﬂ o — a)2|u;L|2(p} dx,

where we used the proposition 6.2.1, the identity V(ufqo) - u;rqu = Vu;r(p and the condition on

the disjoint supports. Finally, considering Im %ﬁég gives the desired result. O

6.2.2 From the energy functional to the mixed formulation

The aim of this section is to find a well-posed problem that is satisfied by the limiting absorption
solution u™ defined in Assumption 6.1.1. We start by rewriting proposition 6.2.8 for a given
Q € %j%er,y (ﬁ; ]R), following Assumption 4.2.2, i.e., dyp = 0 and ¢ = 1 in the vicinity of the
interface X, as

2
pdx = 0.

Jim | v (=)
Then, the idea developed below involves introducing an unknown h € H;er(Z) with the aim of
constructing an “energy” functional. The minimum of this functional should be achieved by u*,
characterized by (u;zg, g+), where h = g*. Next, the functional will be differentiated, which will
result in a mixed problem.

Let (u"),~¢ be such that u" € H;lwr,y(Q) and — div((a + v)Vu") — w*u’ = f, in supp ¢, and
h e Hfl,er(Z). Moreover, we suppose u” — u + s, in L%(Q) as v — 0+, like in assumption 6.1.1.
Notice that we do not impose u” to be necessarily the solution of the problem with absorption

(6.1). Though it may seem strange, but — div((a + iv)Vu") — w?u” = f, must be seen more as a
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Chapter 6. Mixed variational formulation

constraint under which the argument below is developed. Of course, (¢"),~¢ as in assumption
6.1.1 obey the constraint. We define the following the “energy” functional as in Proposition 6.2.8:

S ) = j V|7 (o — ) pdx = Im &, where
& = j () + )7 (02 = ) - 0 = 5p] px.
Lemma 6.2.9. Let (1), be as in assumption 6.1.1 and h € Hp,(%). Then,
0< lim 7@’ h) < xlg* ;.

Proof. The positiveness comes by definition. Beginning with the following triangular inequality
1/2 1/2
(J V|V(uv—s2)|2q)dx) / =<J v’V(urVeg+s )‘zq)dx> /
Q Q

) 1/2 ) 1/2
< (Lv|Vu}’eg| godx) +(J'QV‘VS£+_h‘ q)dx) ,

Lemma 6.2.7 and Proposition 6.2.8 enable us to conclude regarding the upper bound. O

In order to compute the limit of #"(u", h), we will integrate by parts the expression for
&" as in the proof of proposition 6.2.8. First, using the fact that 9 = 0, and the identity
(VU)p =V (Ugp) — UVp,one can rewrite & as

5= [ [+ v =) V(@ = 0) - =) [ ) 0)] dn
- JQ [(aCx, y) + )a, (1 — s5) (u” = s}, )xep] dx
Then we separate
& = 0w, (u — s})¢) — (s (u = s})g) — ¢ (u’ = shu’ — 5],

where

c(u,v) = J (a(x, y) + iv)oxuv dypdx.
Q

Since — div((ar + iv)Vu") — w?u’ = fo on supp ¢, b (", (W’ — sp)@) = ¢ (O sZ)qo). Then, in the
view of the definition (6.7) of {’(1), Assumption 6.1.1 and Lemma 6.2.4, we have

bW’ (u” - s")(p) E(l) ((u + Sg—h) (p) ) (6.18)
It remains to integrate by parts the term bv(sfl, (u” — sp)p), which is allowed since h € Hjl,er(Z):
b¥(sp. p(u” = sp))
J {(@Cx ) + 0,859, (0 = ) 9) = 95 (o, y) + 1)95s]) (" = ) — 0Ps) (" — )} dx.
Therefore, since 4V — u + Sg in L*(Q) as v — 0+, and using lemma 6.2.4, we have that

B(sh (" = 5)0) —— bae (. (w51) 0)

V J— —
(Y sh,u sh) 7_? c(u +Sgput sg_h) ,
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6.2. Construction of a mixed problem

where the last sesquilinear forms is given by
c(u,v) = Z J a(x, y)ouvopdx.
jetpn} >

We observe that the limits depend on the triple (u, g, #). Then we define

FT(u,g,h):=—Im [bglln)g (h, (u + sg_h) (p) +c (u +Sgput Sg—h) —® ((u + Sg—h) (p)] , (6.19)

From this point on, one finds by integrating by parts that #* (u*, g*, g*) = 0 (this is reminiscent
of the proof of lemma 6.2.8). Since we know that the limit of #"(u", h) is non-negative, we conclude
that (u+, g+, g+) is a minimizer of 7. It should be noted that the existence of other minimizers

is uncertain.

The next step of the construction is computing the differential of #*. Rather than directly
computing the differential with the functional (6.19), let’s consider the following simplified

example:

F(u, g) =1Im(b(u, &) — t(w)).

This is a dummy functional with dummy variables u, g, a dummy sesquilinear form b, and a

dummy antilinear form. Let v, k be the dual variables associated to u, g, and t > 0. By definition,

47 ((w,8), (v 1) = lim 7 ((u &) + £, K)) = 7 (. )

Then, one can easily expand
F((u,8) +t(v.k)) = £ (u, &) + tIm [b(u, k) — b(v, g) — ¢(v)] + 2b(v. k),

so that d7((u, g), (v,k)) = Im [b(u, k) —b(v, g) — {’(v)]. Applying the computation above to (6.19)

gives
A7t (g, h), (v.k.D) = —tm [ ((u, g, h), (v.k, D)) = € (v + ¢ 9)]

where a® is a sesquilinear form defined on VO x v with v .= Q x Hjl,er(Z) X H;ET(Z) by

a® ((u, g, h), (v, k, D)
= bgiln)g (h, (v + s @) — b.gzln)g (l’ (u + Sg—h) (P) + C(p (u + Sg—h V T+ Sk—l)

= Z J. (aayshay ((v] + Sk—l) (p) — Oy (@dysp) (vj + Sk—l) ©— wzsh (v]— + Sk—l) (p) dx
jelpn} 7%

— Jbg. (aay ((uj + sg_h) (p) 6751 - (uj + sg_h) 9y (ad,s)p — w? (uj + sg_h) ?lqo) dx (6.20)

]

+ JQ. a [8x (uj + Sg—h) (vj +skp) — (uj + Sg—h) Oy (vj + Sk—l)] Oxpdx,

]

where

C, (U V) := Lz alo UV —UaV| oypdx.

Remark 6.2.10. Notice that #* (u, g,h) = Im [f(l) ((u + Sg—h) (p)] - %a(l) ((u, g, h),(u, g, h)).
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Chapter 6. Mixed variational formulation

Finally, since we want (u, g) to be a weak solution of (6.3), we define
b ((u, g.h), v) 1= blag(u,v) + b (. V), (6.21)
and we introduce the mixed formulation, as in [49]:

Find (u, g,h)eV(l),)»eruch that

a u g h),(v, k) + v,k,[),A) =¢ V + Sp_ , V(v,k,) eV, .

D ((u, g, h), (v, kD) +bD (v, k, D), A) = (D (v + 5D g), V(v.k]D) (6.22)
b ((u, g, h), p) = £ (), o)

Notice the introduction of a Lagrange multiplier A € Q. At some point, the operator B : vy
Q’ associated to the form b will be used. The mixed problem will be studied in details, in
particular its existence and uniqueness, see section 6.4. The tools used for this study are developed

in the next section 6.3.

Remark 6.2.11. Notice that the right-hand side of the first equation vanishes if fo = 0, as in [49].
An important point in the development done in this part is the existence of the limit W) (s}éq)) in
(6.18). On the other hand, this approach cannot be carried out if we only had t) € O’. Indeed, in
that case €1)(s.) would not be defined since sg & Q.

Remark 6.2.12. A similar development above can be conducted for all ¢ € %j}er,y (% R) such that
supp ¢ n (Fp u Fn) = @. On the other hand, a particular and convenient choice of ¢ satisfying
Assumption 4.2.2 is

1+ cos(27rx)

o(x,y) = 2
0, otherwise.

, |x|§§,

6.3 Jump and technical results

6.3.1 Weak jump

It is possible to define a notion of a jump in a weak sense for functions u € Q which satisfy the
constraint in the mixed formulation (6.22). We introduce the following space of regular functions

on the interface
Hpe(%, 1) 1= {g € L*(%) : 9,8 € L*(%), g(0) = g(L)},

paired with the norm

1/2
Iy = (L (9,8 +lg0)P) z0)y )

For the sake of conciseness, (:,-)s denotes (-, )( until the end of this chapter.

H}o(3.1)) Hb(5.1)
Notice that, given g € L%(Z) and k € H!(Z, r), we also set (g, ks = (g, k).

Let us define the following class of sequences of cutoff functions.

Definition 6.3.1. Given a cutoff function ¢ following Definition 4.2.2, let (¢,,),eny be defined by
Pm(x, y) = gp(mx, y).
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6.3. Jump and technical results

Then, given £ € 0",/ € €' (ﬁ) and k € H;er(Z), we denote

Lo (Ysp) == lim e (1 = @) (6.23)

if this limit exists and is independent of the choice of the sequence of cutoff functions (¢,)men
satisfying the above definition. Obviously, £, will not necessarily exist for all £ € Q’. But notice
that &(xl,), associated to ¢ exists, see Remark 6.2.11.

Therefore, assuming that £, exists, the definition of the jump is formalized in the statement

of the following lemma.

Lemma 6.3.2. Letu€Q, g€ Hjl,er () and t € Q' related by

biay (u,v) + b (V) = L(V), Yv € Q. (6.24)

sing

Let (¢)men C ‘gger,y(Q) be as in definition 6.3.1. If Loo(sr) = limy, 400 € (sg(l - (pm)) exists and
does not depend on the choice of (¢y,),,, then jump [uls, of the regular part is defined as

m—-+oo

e @), (b= i Y | oo GGk (62
Jjetpn} i

and it is finite for all k. The limit is independent of the choice of (¢p,),,,, and it holds for allk € H;er(E)

1 1 . _

(1) 500 a0 = by (ko) + b, (.50 +2id Y J wseds — o (5. (6.26)

per\&s st per\ & . T.

jelpny =i
Before proving the lemma, let us make a few comments. For piecewise regular u € H!(Q p) X
HY(Q,), the above definition of the jump coincides with the classical definition [u]y = yo(up) —
Yo(up), where y, denotes the trace on 3, seen either as a part of Qp, or of Q.. Indeed, in this case

(6.25) yields

> | o @G

Jelpn;
= [ 1ot = roan)] @alsonndy + 3. | aorudGumis
> jelpny 7
The first term in the right-hand side of the above can be made more explicit. Indeed, by the
regularity assumption on & and using an explicit form of s, we have ad, (sx¢,,) € H'(Q) and
a0, (skom)ls = k(3)x(y). Observing that |ady(ske,)| 12(Q) S Ikl 25y, the second term is bounded
with the help of Cauchy-Schwarz inequality:

UQ a&xujax(sk(pm)dx

J

< [l (0 psupp ) 12O<C5KP 120,

< Ju i (Qpsupp o) K2 770 0

so that

¥ L]_ = @ g = | [ulfrdy + 0D

jeipn;
On the other hand, the jump defined by (6.25) is not finite for allu € Q; take e.g., u = (log [log |x]| , 0).
Finally, we note that, even for u satisfying (6.24), the jump [u]s is defined in a very weak sense,

since it is taken in the dual space of Hjl,er(Z, r).
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Chapter 6. Mixed variational formulation

Proof of lemma 6.3.2. We test (6.24) with v = sp(1 — ¢,,) € Q. On one hand, we have

bl (0, 5. (1 = ) ———> Lo (5) = bl (8.5, (627)

where {, is defined in (6.23). On the other hand, integrating by parts in the x-direction the term

beg (0,5 (1 — ) gives:

B (w5 (1 = )

S j (=0 (@ 5 (L= ) + 20,29 G (1 = ) — 005 (1 — )} i
Jelp.n} =i

+ Z Jr.(uj(aansk)+i/1ujsk) ds
J

Jjetp.n}
- bgiln)g (kow) +2id ) J useds = ) J {“ay”jTWc - 602“]@} Pmdx = Jn,
jelpn} L jelpny 7

where we used 9,9, = 0 and with

Im = Z J uj(_axaax(skq’m))dx,
jetpny =

cf. the definition of the jump (6.25). Next, using Lebesgue’s dominated convergence theorem

yields

—_ Z J {aayujTy% - a)zuj@} (pde m 0,

Jelpny 7
so that
. 1 . _ .
Jim b8 s =) = b (ew +22 Y | uds— lim
Jjetpn} =t
Replacing the left-hand side of the above by (6.27) shows that lirfrl Jm s finite and, with the
m——+oo

definition (6.25), the jump of u is expressed as

([0 B s 500) 12,50 = b0, (kw) + 5, (g s0) +2id Y J wSeds — Lo (51) -
L jelpn} T

As claimed, the last expression does not depend on the chosen function sequence (¢,,),,,- O

Remark 6.3.3. The definition of the jump (6.25) does not depend on the jump part of the singularity
ink(y)1y,<o. Indeed, in (6.25), s can be replaced by k(y) log |x| or k(y) (log |x| — i1,q). This holds
because, given (¢,,), as in lemma 6.3.2, we have, by the Cauchy-Schwarz inequality and after

integration by parts in the x-direction,

U9 (@0x(@rk(y)))dx

| L 40 (00,1 ok () dx

J Q,nsupp ¢,

.[ Q,nsupp ¢,

Therefore, the jump can also be computed as

n—+oo

([u]. By = lim > J uj(—9y (ady (k(y) (log |x| — il <) @rm)))dx. (6.28)
jelpn} <

This identity will be useful later, see section 6.3.2.
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6.3. Jump and technical results

6.3.2 Jump of the limiting absorption solution

Given g € Per(Z) let us introduce some “artificial singularities” with non-zero absorption A

sa(x,y) = g()log (x + ﬁ)

For positive A, one recovers the “singularities with absorption” of (6.13). We remark that one has

convergence almost everywhere as v — 0+:

ae. .
Sg m sg = g(log|x| +irl,), and Sg. % sy = g(log|x| —imleeg).

We then have the following lemma (which generalizes lemma 6.2.4 to the case of artificial singu-
larities), whose proof is left to the reader.

Lemma 6.3.4. Given g € ngr(Z), the following limits hold in L?(Q) asv — 0+:

v ok +y +
g 7 S dySg- = OySg,
(a £iv)dysg" — adysy, Oxl((@ £ v)dysg") — O(@dysy).

Note that s, = sg. We adopt this convention from now on. From the above lemma, it follows
in particular that for all € C* (Q;R),

ox((a £ v)ox(s3")) — O(ady(s¥Y)) in L*(Q). (6.29)
V—>
Next, we show that the limiting absorption solution (u*, g*) from assumption 6.1.1 has a vanishing
jump.
Proposition 6.3.5. Let (u*, g") € Q x Hp, (%) be as in assumption 6.1.1. Then [u*] = 0.

Proof. Let u™, g* be like in assumption 6.1.1. To prove that [u*]s = 0, we will use the identity
(6.28) defining the jump with s, for a given k € H;er(Z). More precisely, let ¢ be a truncation
function as in the definition 4.2.2 and, for ¢ > 0, ¢.(x,y) = ¢ (f , y). We will show that the quantity
below is well-defined and converges to 0 as ¢ — 0+:

K=y j (o (s ()i

jelpn}

We reexpress J,(k) with the help of (6.29) and the convergence (i4,,), to u* of Lemma 6.2.5:

]S(k)— hm J(k), with JY(k) = Z J uyeg(—ﬁx ((a —iv) 0y (s]:V(pg)))dx fore > 0.
Jjetpn} 75

The main idea of the proof consists in reexpressing J! via b*(u", s "¢,). Since u"” verifies (6.1) and

is decomposed as u" = e, + s§+, defined in lemma 6.2.5,

B (Weg, 5 00) + B (s)e, 5" 00) = €V (5700) (6.30)

One has by, integrating by parts in the x-direction,

bv(u;/eg, Sk ) = J,Q axu;/eg(a —iv) Oy (S]: V(pg)dx + J [(0‘ + iv)ayu;}egay(slz "pe) — 0 Sk V‘PE] dx

= JJ(k) + JQ [(0{ + iv)ayu}’egaysk — w? UregSt ] @dx.
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Indeed, the boundary terms vanish due to the choice of ¢ in the vicinity of I'; and I'y. Asv — 0+,
by lemmas 6.2.5, 6.3.4 and the limit (6.29), it holds that

V' Weg, s 0) = Je(k) + L(k), I(k) = Z J [aayufays,; - wzufi] @ dx. (6.31)
jetpn} 7
Next let us consider the second term in (6.30). Performing once again integration by parts in the

x-direction, one finds
bv(sg+, slzv(pg) = JQ [(6{ + lV) 8ys;+ 8y (s;v(pg) + ((—ax ((6( + lV) 8xs;+)) — w23§+) (s];V(PE)] dX,

and by lemma 6.3.4, as v — 0+,

bv(s“g’,+, S 0p) = bgiln)g (gt scee) = J [aays:gﬁ dy (S 0c) — 0 (aaxs}) (s @) — a)zs} (s¢ gog)] dx.
. (6.32)
Since s;.” converges to s; in L*(Q) and by definition (6.7) of (D, lim,_,, ¢ (s:"¢e) = S (55 @¢)-
Finally, by Lebesgue’s dominated convergence theorem, as ¢ — 0+, L(k), bgiln)g (g+,s,:(p€) and
¢ (s; @) both go to 0. Therefore, combining (6.31) and (6.32) in (6.30), and taking ¢ — 0+, we

obtain that
61_1)1’(1)’1_'_ Je(k) =0,

which leads to the conclusion thanks to the alternate definition of the jump (6.28). O

6.3.3 Green’s identities

Once the notion of jump defined, one next step is to extend the Green’s identities. Recall the

expression (6.20) of a® in which appears the following sesquilinear antihermitian form
Cy(U,V) = J a[(VU)V - UCWV)] - v, (6.33)
Q

withU = u+s; 5 and V = v + s;_;. The goal of this section is to express Cy, (U, V) using the
(1) 0

sesquilinear forms breg and b

sing- 1he first step is the following manipulation, which will be used

elsewhere:

[Viv —u W] - vy = Vu - V(w)) = Vu - V) — V(uy) - Vv + Vu - Yy

_ _ (6.34)
= Vu- V) — V(uy) - Vv.
Therefore, given a Lipschitz domain O and u, v smooth in 0, we have
J a Vv — uv| - vidx = J a[Vu Vo) = V(uy) - W] dx. (6.35)
O O

We observe that, depending on whether U, V are regular, i.e., belonging to Hll /Z(Q )X Hl1 /Z(Qn),
or singular, i.e., of the form s, with g € Hjl,er(Z), the expression (6.33) of Cy (U, V) will obviously

change. There are three different cases:

o U, Vare both regular, in Q, see proposition 6.3.6,
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« U, Vare both singular, i.e., U = Sg and V = s, see proposition 6.3.8,
« Uis regular and V'is singular, see proposition 6.3.10.

The simplest case is when U,V € Q. According to the above, we reexpress the right-hand side
of the identity (6.35) with O = int (STP U ﬁn) Namely,

J a[ VUV — UVV] - Vydx = J [avU - V() — 0?UVY))| dx. - J [aV(UY) - WV - ?(Uy)V] dx.
? 7 o (6.36)
Recalling the definition (6.4) of bg;g:

bﬁiﬁ(u, v) = Z J (aVu; - Vv; — a)zujVj) dx + i/lj ujvds,
jetpnt 1% I

one has the following proposition.

Proposition 6.3.6. Letu,v e Qandy € nger,y (Q). Then

¥ J & (Vuj¥; — u7v,) - Vihdx = bey(u, vi) — biep(v,up) — 22 Y J uvds.
jelpany =<4 jetp.ny T

Let us now consider the second case, when U and V are both singular, that is U = Sg and

V' = s;. Evidently, we cannot apply (6.36) for O = Q,, and ¢ non-vanishing on the interface,

since the terms IQP aV(sg) - Vsdx and JQP aVsg - V(s )dx are not defined. This difficulty can

be overcome by integrating by parts in the x-direction. Let u, v be sufficiently smooth in 0, then

J a|[Vuv— uvv| - Vidx

0
= [ alou-a0 - o)) ax+ [ [(-a(eoa) W~ @) Carteam)] ox
9 0
(6.37)
+ J [(aanu)T/— u(a&nv)] Yds
20

= J [aayuay (v + (—ax (aou) — wzu) W//] dx + J (ad,u) wids
0 90 (6.38)

- I@ [(xéy (w) v+ (w)) (—0x (@dv) — wzv)] dx — L@ u(ad,v)yds.

Compare with the definition of pl)

sing*
bgl-ln)g( g,v) = Z J [aaysg% + (—ox(@dysy) — a)zsg)Vj] dx + J (adysg + idsg)Vids.
jelpn} 7% L)

Lemma 6.3.7. For g,k € H;e,(z) andy € ‘Eo”;er)y (X R), for j € {p,n}, it holds that

JQ. a [axsgi - Sgaixsk] axl//dx = JQ [(_ax(aaxsg)) Sk — Sg(_ax(aaxsk))] ¢dX

Jj J

[ (a5~ 5@ s - o | eIROIGNO.9d,

where o, = 0 and o, = 2i.
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Chapter 6. Mixed variational formulation

Proof. Applying (6.37) in 0 = Qf = {x € Q; : dist(x,%) > e}, ¢ > 0, j € {p,n}, with u = s, and
v = s yields

JQ€ a [sg@ - axsgi] ax‘//dx = J;x [sg(_ax(aaxsk)) - ﬁ(_ax(aaxsg))] ¢dX

+ L [sg(aansk) - (aansg)i] Yds — ail;,

J

witha, = 1and a, = -1 and

If = J [sg(aaxsk) - (aaxsg)ﬂ] ydy.
{x=a;e}

As ¢ — 0+, the volume integrals over Qf converge to the volume integrals over Q;, since the

integrands are obviously in L(Q ;). Let us compute the remaining limit li%l+ If. Recall that
E—>

sg(x,¥) = g(¥)S(x) with S(x) = log |x[ + inl <. Ase — 0+,

a(ae
4

- ) o o
I = L gk(y) gy [S(a,f) - S(aje)] Y(aje, y)dy — oj L EWk)x(y)yY(0, y)dy,

where 0p=0,0,= 2iT. O

The proposition below is a rewriting of formula (6.38) using the above lemma.

Proposition 6.3.8. Let g,k € Hjl,er () andy € ‘Zo”; (% R). It holds that

er,y
J a [ngi - ngSk] - Vidx
Q

= bgiln)g (g, ) — bgiln)g (k, sg¢> —2iA Z J SgSkyds — Ziﬂj EOMk()r(y)Y(0, y)dy.
jetpany T >
Applying the last proposition with ¢y = 1 yields immediately the following counterpart of

Green’s third formula.

Corollary 6.3.9. Foreach g, k € ngr >),

b (8.50) — gk s) = 2im(g k), +2id Y J s¢5%ds. (6.39)
jetpn} T
The third and last case consists in taking U regular and V singular, namely U belonging to
a certain subspace of Hll/z(Qp,n) and V = s. Let us introduce 5 (x,y) = 1(0, y) for (x,y) € Q.
Notice that i is actually a constant if 9, = 0.

Proposition 6.3.10. Letue€Q, g € Hfl,er (X) and t € Q’, be such that

bgé (u,v) + pD (g, v)=1t(v), WeQ. (6.40)

sing
Moreover, assume that we can define £, as in (6.23). Letk € H;er(Z) andy € %;er,y (% R) satisfying
9y = 0. Then

Z J a[Vujsg — uiVse| - Vipdx
&

Jjelpn;
= ~ b)) — b5, (e, uy) — 20 Seyd k
=t () — b0 (g 5) — b0 (up) — 20 Y | wgds + gl By, (641)
jetpn} T
where the jump [u] is defined in the statement of lemma 6.3.2 and £,(sg)) as in (6.23).
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The proof of the previous proposition relies on the following technical lemma, most of the
proof of which is left to the reader.

Lemma 6.3.11. Letue Q, g € H;er(Z), and € (gger,y (ﬁ; ]R). Then, (¥ — s,) Vu; € L2 (Qj), and
(Y — Ys) 9xSg € L% (Q). As a consequence, u € L*(Q), s.t. u|Qpn = Up p, satisfles (Y — Ys)u € HY(Q).
Moreover, the trace yy [( — ys)ul = (Y — Ys)uls, vanishes.

Proof. Firstly, there is a neighborhood of 3 such that [y — x| < C|x| < Cla|'/2. Consequently,
inside this neighborhood, |( — is,) Vuj| < Cla|!/? |Vuj| and ‘(1,& - ) axsg‘ < C|g| which prove the
first assertion. This also proves that ( — ) u; € Hl(Qj) since V (( — ¢5) uj) =V —ys)u;+
(¥ — ) Vi for j € {p.n;

Secondly, we prove the statement about the trace of h,, := ( — Ys)u, € H 1(Qp) only. With
the standard density argument, it suffices to prove the result for u, € C*(Q,,). We start with the

expression

X

Bp(0,) = hy(x, ) - L ahy(s. s, (x,y) € Q.
Applying the Cauchy-Schwarz inequality in R? and L2() p) yields

2
[hp(0, Y)I? < 2lh,(x, y)* + 2

X
J dsh (s, y)ds
0

X
< 2|hy(x, VI + ZxJ |95h (s, y)|*ds.
0

Remark that a priori (x, y) = hy(x,y)/x € LZ(QP). Integrating both sides of the above inequality
in the strip Q% = {(x,y) € Q- |x| < &}, € € (0,1), allows to obtain the following inequality,

where all terms in the right-hand side are finite:

[, o pay <. (z J, ot ax + e2||Vhp||§2(Q;))
P

SS(Z

The above is valid for all ¢ > 0, hence taking ¢ — 0 in the above shows that [yoh,l2s) = 0.
Repeating the argument for h, = ( — ¢s) u, leads to (¢ — ys) u € HY(Q) with u|Qpn = Uy, O

hy(x, )|

+ VR[5 e )
L2(9%) %)

Proof of proposition 6.3.10. We start by using (6.35), with 0 = Q, :

J a|[Vuse —uVs| - Vypdx =1, — L, with
jetpn 7

L= Z J’Q'(xaxuj&x (s —ys))dx. and I, = Z L}a&x (u; (¥ — ¥x)) Osdx,

jelp.n} je{p.n} 734

Remark that the above two integrals are well-defined by lemma 6.3.11. On one hand,

L =ba s —y) - Y L (20,9, (s (0 = ¥)) — w0?ui(sc (F — ) ) dx
jelpn} =2c
—il Yy L u; ( — ) Sgds.

jelpn}
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Chapter 6. Mixed variational formulation

On the other hand, integrating by parts in Q;, j = p,n, and noting that, according to proposition
6.3.10, (¥ — ¥s;) u € H'(Q) with vanishing trace on %, and ad,sly = k() r(y) yields

j G =) o @asdx T | )~ i) s

JE{P n} je{p.n} iy

— b Geuy o)) = 3 | (ady ) Bk — 0 (14— ) )

jelpn}

+id Y J luj(lp—lpz)gds.

jetpnt T
Hence, using 9§ = 0,

S [l — el = B s = 40) — b (w2
Jetprn} (6.42)
—2id ) J use (Y — ) ds.

jelpn} =i
Comparing the above with the statement of the proposition, it remains to rewrite the term

bﬁég (u, si( — 1)), using the identity (6.40) and the fact that ¢/5; is constant:

be (w5 = ¥5)) = LY — ¥5)) — b (& 5k — ¥))
= too (59) — B (& 56 — ¥ (oo (50 — Do (&:50)) . (6:43)

where oo (1) and £, (s) are well- deﬁned because supp £ n ¥ = @. Notice that (lln)g (g, sx) and

Smg ( g, st) are also well-defined since b Smg ( g,v) is well-defined as soon as v € L? (Q), dyv € L2 (Q)
and the trace of u on I'; belongs to LAT T;) for j = p,n. Recall that the jump [u] satlsﬁes (6.26),
namely
Foo (5) = bing (85 — bl (ki) = 202 Y j wseds — ([u], K.
Jjetpn} =i
Combining (6.42), (6.43) and the above identity results in the desired expression. O

Remark 6.3.12. Let ¢ be as in definition 4.2.2. With this particular regular function, the previous
propositions are respectively summarized as, with u, v, g and k satisfying the assumptions of the

corresponding propositions,

(prop. 6.3.6) Cp(u,v) = breg(u Vo) — reg(v ug), (6.44)

(Prop. 6.3.8)  Cp(sg5k) = b8 510) — blme(k, 540) — 2i(g. k). (6.45)

(identity 6.42)  C,(u, ) = breg (w,s(p—1)) — bgm)g (k,u(p—1)) +2id Z J ujsids  (6.46)
jetpan =T

(prop. 6.3.10) = oo (510) — Bty (8. 510) — Dl (K, ug) + ([ul, K. (6.47)

6.3.4 Expressions of o

Since we obtained a mixed formulation in section 6.2.2, it is important to study a® on the kernel

of B : y() Q’, the operator associated to b§§§:

Ker B := {(u, g.h)e v . pD ((u,g,h),v) = reg(u v) + bglln)g(g, v)=0Vve Q}.
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6.3. Jump and technical results

For the convenience of the reader, we recall the expression (6.20) of the form aD;

a® ((u, g, h), (v. kD)) = bgiln)g (h, (v + sg_pDo) — smg (l (u+sg h)(p) +C <u +Sgpy V + Sk l)

From now on, we assume that ¢ € %”;er,y (% R), supp (pnﬁ,p = @,9yp = 0and ¢|y, = 1, as in remark
6.2.12, so that ¢ satisfies the assumptions of proposition 6.3.10. The following technical lemma
allows to reexpress the form a® ((u, g, h), (v, k,1)) for (u, g) satisfying a variational equation like
(6.11), h € H}py (=) and (v, k,1) € V.

Lemma 6.3.13. LetueQ, g€ H;er (Z) and t € Q’, be such that

beg (V) + b0 (g V) = L(v), v eQ, (6.48)

sing

and £, exists as in lemma 6.3.2. for all (v,k,I) € V(l), it holds

a® ((u, g, h), (v, k, 1)) + D (v, k, ), up) = £ (vp) + Loo (Sp_i0)
+ b(l) ((Vs k’ l) > Sg—h (1 - (P))
—2in(g —hk — l)LZ(z) +([ul.k =Dy

1 1 /. ) o
60 =) = b (K sgn) + 200 Y }L Sg-ds.
jeip.n}oti

(6.49)
Moreover, assume that v has a jump as in lemma 6.3.2, i.e., there ist € Q" such that breg (v,p) +
bglln)g (k,p) = t(p) for allk € H;er(Z),p € Q, and {, has a sense. Then, we have for all k,l € per(Z)

a® ((u, g, h). (v.k. D) = (£ (v) + oo (5—10)) — (£ (0g) + feo (5g-107))
+([u].k =Dy — ([v]. g — Ay (6.50)
- ZlJT(g - ]’l, k— DL%(Z) .

In particular, if (v, k,I) € Ker B(l), ie,l =0, then

dD ((u, .1, (v.k. D) = £ (v9) + beo (se9) + ([ulk — D — (V] g — hyg — 2im(g — bk — Dz
(6.51)

Proof. We start by developing the first term in the definition of a® given by (6.20). Our goal

is to rewrite it in terms of the forms b(!, bgm)g and bgm)g, and then rearrange the terms as in the

proposition. Using (6.44), (6.45), (6.46) and (6.47) gives

Co (u +SgpV+ Sk—l)
=Cp(u,v) +Cp (u, 5 + G, (Sg—h’ V) +Cy (sg_h, Sk—l)
(1)

= biep(u, vg) — bieg(v, up) (6.44)
o (59) — DS (8 510) — o (k — Lug) + ([uls. k — Dy (6.47)
050 (g~ hv(p— 1)~ bleg (vosgp (9~ D) +2id Y J sg_n¥ids  (6.46)

jetpn} T
smg(g h, sk—1p) — smg(k L sg—ne) — 2in(g —h.k—D,. (6.45)
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Chapter 6. Mixed variational formulation

Remark that in the above the term €,,(sx_jp) is well-defined. Rearranging the terms in the above
yields

C (u + Sg_p, V + Sp— l) = Loo (Sk_p) + [breg(u vo) + b(zln)g (g, v(p)] [ reg(V up) + bgln)g (k, uqo)]

— 6% (v, sy (0 = D) + b0 (k56 (o = D)
—=2in(g —hk =D, +{[uls,k =Dy

1 ) /N . —
— b (g — hv) — b, (K, sg-p) + 20 | {Z }J Sg-h¥jds
Jepn

glln)g(l (u + S ) ®) — bglln)g (h, v+ s_D )

Using the definition (6.21) of the form b, namely b = bﬁelg + 50 and the assumptions of the

sing’
lemma on (v, k,[) and (u, g, h) we rewrite the above as follows:

Cp (0 Sge v+ 561) = L(V) + boo (5-10) = 0D ((v.k. 1), u) (6.52)
— b ((v,k, D), 5g-p (9 = 1))
— 2im(g — bk =D +([uls, k= s
— b (g — hov) = by (K.sg_p) +2i0 Y J sg_nvids
jelpny L
+ B (0 + 5g) ) = B (0. (v + 5t )

Plugging in the resulting expression into the definition (6.20) of a® yields the first expression in
the statement of the lemma:

a® ((u, g h), (v.k, 1)) + bD ((v.k, 1), ug) = £(v0) + boo (s_1) + b ((v. k. ), 51, (1 = )
—2in(g —hk— l)LZ(z) +([ul.k = D5,

1 O . _
=gl — o) = b (k,sg_h)+2M,{Z}Lsg_hvjds.
jelpn}~ti

To obtain the second identity, given (v, k, ) € Ker v(D such that the jump [v]s; is well-defined, it
verifies identity (6.26) with £, =

([vls, g —h)s = bgm)g(g h,v) + bsmg (k, Sg—h) + 2id {Z: }J; VSg—_nds — fo (Sg—h) .
jep.n j

Therefore, replacing the last terms of the first identity of the proposition gives precisely the
second one. Finally, given (v,k,[) € Ker B, the third identity is obtained naturally from the

second since £, = 0. O

The results that follow lead to an alternative expression to a® on Ker BV x Ker B,

Lemma 6.3.14. Let (u, g, h), (v, k,I) € Ker B, Then we have the following identity:

([uls, B5 — ([V]s. &5, = 2im(g. k), +2id ) L (1 + sg) (v + si)ds. (6.53)
jelpn} =i
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6.4. Well-posedness of the mixed problem

Proof. Let J :=([u],k)s; — ([V], g)s. According to the jump formula (6.26), we have
J= by (kow) + b (g50) + 204 Y. J wSids — b (8,V) — by (kusg) + 210 Y I sgvids.
jetp.ny L jetpny T
Making use of the fact that b ((u, g h),v) =0, bD((v,k,I),u) = 0 and using the definition (6.21)
of bV yields

SQK (u,v) — reg (V u)+ bsmg (g, s) — bgm)g (k s ) +2iA Z J (uji + sng) ds.
7, i . jelpmtl

From the definition (6.4) of bﬁeg, it follows that J; = 2id Z Ir ujvids. Applying (6.39) to refor-
jeipn}
mulate J,, we readily arrive at (6.53). O

The above lemma yields immediately the following property.
Corollary 6.3.15. Let (u, g, h) € Ker B with g # 0. ThenIm([u]y, g)s > 0.

Proof. 1t is a direct application of previous proposition with v = u and k = g, so that
9 2
Im([uls. £)s = wlglizey + 4 D o+ gl
jeip.n} !

O]

Finally, lemmas 6.3.13, 6.3.14 allow us to prove the following result, the second part of which
is proposition 23 from [49].

Corollary 6.3.16. Let (u, g,h), (v,k,I) € Ker B, Then

a® ((u, g.h), (v,k, 1)) = 2in(g, k), — 2in(g — h,k — Dy + 2iA J (u+ sg)(v + s;)ds.
jelpny =T

In particular, it holds that

2
dV ((u,8,0).(u.8.00) =210 Y [+ sg], ... anda ((0,0,h).(0.0,h)) = —2in |}z sy -
jeip.n} !
(6.54)

6.4 Well-posedness of the mixed problem

We now study the mixed problem (6.22) in more details. Namely, we are interested in the
uniqueness and existence of its solution. First, we study a stabilized version of the mixed problem
(6.22) Next, we prove its uniqueness. Finally, we address the solution provided by assumption
6.1.1.
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Chapter 6. Mixed variational formulation

6.4.1 Stabilized problem

The study of a® on KerBW, in particular lemma 6.3.16 shows a lack of control in the norm
(RISEIHE
ma® ((w, g,h), (u, g, ) = 27lhly 5 + 22 Z Hu] tsglr, ) (6.55)
Jjetpn}
Therefore, let the stabilized counterpart of (6.22) be

Find ((u, g, h),A) € v x Q such that
a ((u, g. 1), (v k. D) + 5D (v, k. D, M) = (D (vp) + 10 (5e_10), Y(v.k.D €V, (6.56)
bD ((u, g h).p) = (D), veQ

where

a5 (w, g 1), (v. kD) = a® ((u, . 1), (v, k. 1)) = ip (8. D)prisy — (D) with p > 0.

The stabilization terms involve the Hfl,er(E) inner product, which corresponds to the fact that g
must belong to Hjl,er(Z). So one cannot choose an Hy,,(%) inner product for s < 1.

Retracing the steps of [49], we can prove the well-posedness result below regarding the
stabilized variational formulation. We use a classical approach to the well-posedness of the mixed
formulations. According to the Babuska-Brezzi theory, it is sufficient to prove a surjectivity
property of th(e)operator BM . v(1) s 0’ associated to the form b and an inf-sup condition
1

for the form a, * on the kernel of B(). The kernel of the operator B() is characterized as

Ker BY) = {(u,g,h) € v . breg(u V) + pY (g,v)=0VveQ}

sing

We observe that, since the third variable i does not appear in the characterization of the kernel,
it can take any value. We use this property on several occasions throughout the manuscript.

Introduce the following problem: given ¢ € Q’,
FindveQs.t.

reg (V w==2p), vpeQ.

The problem is well-posed, see [49, proposition 4]. As a straightforward consequence, one finds
that the operator B is onto Q’. We can now state the well-posedness result of the stabilized

variational formulation.

Theorem 6.4.1. Let p > 0. Forall f € LZ(FP uT},), the stabilized mixed formulation (6.56) admits

a unique solution.

Proof. One needs to verify an inf-sup condition for the form ag,l) on the kernel of B, The proof
mimics the one in [49], and is based on identities (6.54) for (u, g, h) € Ker BW. Recall that a™ is
anti-hermitian, due to its structure (6.20). Regarding the inf-sup condition, we note that for all
(u, g, h) € Ker B(l),

imal((u, 1), (u, g, ~h) = 27l ) + 22 Z ”“f”gHLzm
Jjelpn}

+ plglZgsy + PlALs)

> C (lul + Igi2 ) + W25, )
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6.4. Well-posedness of the mixed problem

since the norm of u is controlled by the norm of g. In the statement of [49, proposition 13], with
f =0, one shows that |[ufp < bgl.zn)g (g,

bgiln)g(g> )

o < |glg2(s), while in our case the same argument yields

a stability bound |uy < o < lglas)- i

6.4.2 Uniqueness of the solution

The goal of this section is to prove the following result, which shows that the mixed variational
formulation (6.22) is injective. Let Ay (V(l))/ be the operator associated to a®.

Proposition 6.4.2. Ker BW n Ker AM = {(0,0,0)}.

Remark 6.4.3. Let us remark that the injectivity of the non-stabilized mixed formulation does not
follow from the identities (6.54) previously obtained in the article [49], which later on served to
construct the stabilized mixed formulation. Indeed, applying these identities allows to conclude

that h = 0, and (uj +s

g)’rj = 0; the latter, however, does not imply thatu = 0 and g = 0.

As a matter of fact, given a solution (u, g, h) € VD of the mixed variational formulation (6.22),
the conditions of lemma 6.3.2 are obviously satisfied with gand ¢ = M, and consequently the

jump [u]s is well-defined. Therefore, we can reexpress a) using the jump [u]s.

Remark 6.4.4. In the context of lemma 6.3.13 and in the light of remark 6.2.10, one can rewrite the

minimization functional #* (u, g, h) on the kernel of B® with the help of the jump [u]s:
7 (u,g.h) = 7lg — hlfy) ~Im[([uls, g~ B)s] (u g.h) € Ker B,

Proof of proposition 6.4.2. Let (u, g, h) € Ker B n Ker A, Using the identities (6.54), it yields

2
ma® ((w, g.h), (u, g, ~h) = 27l 5 +24 Y, Huj+sg\|L2(rj) =0,
Jjetpny

so that h = 0. Next, since (0,0, g), (u, g,0) € Ker B(l), from (6.51) it follows that
aD((u, g,0),(0,0,8)) = 2in|gl2(z) — ([u5. &)s.
aD((u, g,0), (u, g,0)) = —2ir|gl72(z) + 2iIm ([uly, )s.
Combining the two identities above yields
Ima® ((u, g.0). (u,g.28)) = 27gli25) .

Because (u, g,0) € Ker A(l), the above implies that g = 0. Finally, (u, 0, 0) € Ker B(D implies that

bgelé (u,v) = 0 for all v € Q. Together with proposition 4 of [49] about the well-posedness of the
problem (6.4.1), this implies that u = 0. O

Theorem 6.4.5. The solution to (6.22), if it exists, is unique.

Proof. By linearity, it is sufficient that to check that if (u, g, h, A) is a solution of (6.22) with ¢,
then (u, g, h,A) = (0,0,0,0). By proposition 6.4.2, u = 0 and g = h = 0. Finally, we have for all
v. k) e v

0=H2 (kDN = (BON@ED) = ED kDAY,

v’ y@®

We conclude that A = 0 because BY) is onto Q. O
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6.4.3 Existence of the solution

Proposition 6.4.2 shows that the mixed formulation (6.22) has at most one solution. Therefore,
if we construct a solution to this formulation, it will be unique. It is thus reasonable to look for
(u, g) as the limiting absorption solution of the original formulation (6.1), as v — 0+. From the
content of section 6.2.2, we should expect that h = g. Moreover, again, by explicit computations,

in this case one can show that the Lagrange multiplier A = ug, see lemma 6.3.13.

However, the above said is not straightforward when comparing the section 6.2.2 and the
remark 6.4.4, because of the presence of the extra term involving the jump [u]y in the functional
JF 7, which did not seem to occur in the original functional #”. This term becomes more apparent

in the following proposition.

Proposition 6.4.6. Let (u,g) € Q x H;er(Z) be such that bgég (u,v) + bgiln)g (g,v) = ¢ (v) for all
v € Q. Then, for all (v,k,]) € V(l),

a ((u, g, 8), v,k D) +bD (v, kD), up) = ¢V (v + ) 9) + ([uls, k = Dy. (6.57)

As a consequence, if (u, g, g), ug) is the solution of (6.22) then [u]s = 0. Conversely, if ((u, g, h), )
is the solution of (6.22) and [u]s, = 0, then g = h and A = ugp.

Proof. Apply (6.49) to (u, g, g) yields the identity of the proposition. Then, if ((u, g, g) , ug) is the
solution of (6.22), we have ([u]y,k — )5, = 0 for all k,[ € H;er(Z), ie., [u]y = 0. Conversely, if
((u, g, h),A) is the solution of (6.22) and [u]y = 0, then ((u, g, g), ug) is also a solution, so that
g = hand A = ug by uniqueness of the solution, see theorem 6.4.5. O

Notice that the above proposition does not ensure the existence of a solution to (6.22), nor that
(u, g, g) is the solution, since it may happen that the solution of the mixed variational formulation
satisfies [u]y # 0.

Nonetheless, the above shows that the question of the consistency of the mixed variational
formulation (6.22) with the original limiting absorption problem (6.1) reduces to the question of

the jump of the regular part [u]y, where we seek (u, g) to be the limiting absorption solution.

Theorem 6.4.7. Let (u*, g*) be like in assumption 6.1.1. Then (u*, g%, g*,u"¢) is the unique
solution of (6.22).

Proof. 1t suffices to verify that the limiting absorption solution (u*, g*) as defined in assumption
6.1.1 satisfies the assumptions of proposition 6.4.6, with [u*]sx = 0. This follows from lemma 6.2.1
and proposition 6.3.5. Finally, this is the unique solution by theorem 6.4.5. O

Remark 6.4.8. The mixed formulation takes its origin in the minimization of a functional li%q F.
v—0+

The minimum of this functional is achieved in particular when h = g*, and thus it is unsurprising

that the Lagrange multiplier 4 is chosen as g* in the above. As for an explicit form of A = u%g, it

follows from the computations, see also [49, section 5.2] and proposition 6.4.6.
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6.4. Well-posedness of the mixed problem

6.4.4 Discussion on the stability of the solution

Since Theorem 6.4.7 ensures the existence of a unique solution of the mixed variational formulation
(6.22), the last question to be addressed concerns the stability of this solution with respect to the
data fo € L*(Q) and fi € L*(T, uT),).

Before proceeding, let us recall the following proposition. It is a consequence of [4, Theorem
1], which uses mainly pseudo-differential operators.

Proposition 6.4.9. Let fo € L*(Q), f; € LZ(FP uT,) andu € Q be the unique solution of

Findu € Qs.t.
0 (6.58)
breg(u, v) = (), forallv € Q.

Then, 9, (aayu) € L%(Q) and there is a constant C > 0 such that Hay (aayu)H 2(Q) <CIAfl L2(T T, )

Let us state the main result of this section.
Proposition 6.4.10. Let (u, g, h) € VD) be the solution of (6.22). There exist C > 0 independent of
(u,g,h), fo € L>(Q) and fr € LZ(FP uT},) be such that

2
hiZycsy < € (Il + Uiz, (I8l + Plie)) -

The inequality above derive usually from the coercivity of the problem. However, in the
case of our mixed problem, the norm associated with the space v does not appear in the
inequality (6.55), and the proposition is not obvious. Then, a natural corollary of the proposition

above is the following.
Corollary 6.4.11. Let (ut,g*) € O x H;er(Z) be as in theorem 6.4.7. There is C > 0 independent of
(ut,g%), fo e LA(Q) and fy € LZ(FP uT,) be such that
+
187|125 < € (1 felizoy + Iilzor,y) -
The proof of the proposition 6.4.10 relies on the following lemma.

Lemma 6.4.12. Let u € Q be such that breg(u V) = E(l)(v) Then, there exist a constant C > 0 such
that for all k € Hjljer(Z)

(uls K)s| < € (Ifalzgy + Uil M) -

Proof. The expression of the jump (6.26) gives here:

([uls, b)s = Smg(k u) + 2id Z J useds — 1D ().
jelpn} T

Since 9, (aayu) € L?(Q) by Proposition 6.4.9, integrating by parts Bt (k u) in the y-direction

sing
yields:
bglln)g(k u) = J [ aa U ) S+ uj( -0y (@d,s1) — w sk)] dx + J Uj(aySy + iAsi)ds.
jelpn} 7S ¥
The inequality of the lemma then follows easily. O
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Chapter 6. Mixed variational formulation

Proof of proposition 6.4.10. Let u; € Q be such that b§§§, (ug,v) = ¢ (v) for all v € Q (see [49,
Proposition 4]). Then, consider ug = u — u;. We have (ug, g, —h) € Ker B, Therefore, using
identity (6.55) yields

2n|hlfasy < o ((ug. g.h). (ug, g. )|
= ‘E(l) ((uo + 3g+h) (p) —a® ((u,0,0), (ug, g, —h))‘ .

Then, Lemma 6.3.13 links the last quantity with the jump of u,:

a® ((uy,0,0), (ug, g, ~1)) = €0 ((ug + sgan) @) + ([uel, g + )5,

so that
2 |hlfacsy < Kluel g + hyy).-

Finally, using Proposition 6.4.9 with Lemma 6.4.12 gives the result. O

Remark 6.4.13. Given the solution u of (6.58), Lemma 6.4.12 shows in particular that its jump
belongs to L2(%).
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CHAPTER 7

Simplified variational formulation and numerical ex-

periments
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7.1 Simplified variational formulation

Let Q = (—a,a) x (0, L), with the notations of Chapter 4, and u™ be the limiting absorption solution

of
find u € L?(Q) such that

— div(aVu) — 0?u = fo in Q,
adpu +itu = fr onl,ul),
u(x,0) = u(x,L), (adu(x,0) = (ad))u(x,L), x € (-a, a),

where supp f n % = @. In the view of the results from Chapters 5 and 6, u™" satisfies the decompo-
sition of Assumption 6.1.1,i.e., u" = u;reg + u;'{ng. Moreover, Propositions 5.3.5 and 6.3.5 show that
the regular part has a vanishing jump through the interface, and Lemma 6.24 provides an explicit
’

formula of the action of this jump as an element of (H;er(Z))

LRy 5.0 i) = P () + B (g0 +200 j ueds — o (). (7.1)
e e jetpn} i

Therefore, this naturally leads to the following problem:

find (u, g) € O x Hﬁer(Z) such that, for any (v,k) € Q x leer(Z),
bay (,v) + b (g, v) + ([uls, Ky, = O ().
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Chapter 7. Simplified variational formulation and numerical experiments

Refer to (6.4) (respectively (6.5)) for the definition of bselg (resp. bsmg) Then, using the expres-

sion (7.1) of the jump, this leads to the following simplified variational formulation:

find (u, g) € Q x per(Z) such that, for any (v, k) € Q x per(Z)

(7.3)
’gg (11 V) + bglln)g (g’ V) + bgzln)g (ll k) + bgzln)g (g, Sk) = f(l) (V + Sk) s
where we introduced
Elln)g( k) = glln)g (k,u) + 2iA Z J UJidS. (7.4)

jelpny T

The mixed variational formulation proposed in Chapter 6 and the above variational formulation

are equivalent in the following sense.

Theorem 7.1.1. Let (u, g) € Q x Hjl,er(Z) be such that ((u, g, g),up) € v« Q is the solution of the
mixed problem (6.22). Then, (u, g) is a solution of the problem (7.3).

Reciprocally, let (u,g) € Q x H‘ger(Z) be a solution of the simplified problem (7.3). Then,
((u, g, 2),up) € v x Q is the solution of the mixed problem (6.22).

Proof. Let ((u, g, g2),up) € v x Q be a solution to (6.22), and k € H;er(Z). Then, according to
proposition 6.4.6, we have

(D (0 + 590 ) = aV ((u, g, £, (0,0,k) +b((0,0,), up) = {[uls, k5 — €1 (s50) .

Hence, ([u]s,k)y = 0 forall k € H;er(Z) and (u, g) is a solution of (7.3).
Reciprocally, let (u, g) € Q x H;er(Q) be a solution to (7.3). Considering k = 0, we have for all

veQ

bleg (0, v) + b (g.V) = 1 (v).

Then, one can apply Proposition 6.4.6,

aD (0, 8.9,k D) +bD (v, kD), up) = D (v + s 9) + ([uly. k =Dy, V(v kD eV,

(7.5)
On the other hand, taking v = 0 in (7.3) proves that [u]s = 0. Finally, plugging it in (7.5) ends the
proof. O

The last theorem, complemented by Theorem 6.4.5, has the following corollary.
Corollary 7.1.2. The solution to (7.3), if it exists, is unique.

We discretize the two problems (7.2) and (7.3) in Section 7.3. However, at this point no proof

of the well-posedness are available.

7.2 Numerical experiments for the mixed variational formula-
tions
The numerical experiments consist in checking the convergence rate of the quantity of interest,

namely the regular part u € Q, the amplitude of the singular part g € H;er(E) or the jump of the

regular part [u]y, for several test cases. We set Q = (—1,1)%. Simple test cases can be computed
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Figure 7.1: Real part (left) and imaginary part (right) of u(x, y) = —”YKy(x). One may observe

that all level set lines start and finish on the interface at x = 0, because of the presence of the
logarithmic plus jump singularity.
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Figure 7.2: Real part (left) and imaginary part (right) of the regular part of u(x, y) = —"™VKy(7x).
One may observe that all level set lines are continuous through the interface at x = 0, which
indicates that it obviously has a vanishing jump.

from Chapter 5, with a(x, y) = x. In that case, J)(y) = ¢, A = kz. Then, typical solutions, for
k > 1, read:

+ +

u g Ureg
1 0 1
s 1 . (7.6)
RV (kx) 0 RV o (krx)
—ek TV (k) kmy ékmy (~Ky(kmx) — S(x))

Notice that these solutions solve div(xVu) = 0 in Q. We may also use the solutions above with
 # 0, by computing the associated source term fq,.

We first provide a few additional comments on the discretization proposed in [49]. Then, we
discretize the method proposed in Chapter 6. Finally, we experiment the discretization of the
simplified problem (7.3).
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Chapter 7. Simplified variational formulation and numerical experiments

7.2.1 Mixed variational formulation in H}, (%)

Recall the conforming discretization of (4.17), V}SZ)h = O, % H}fz x H]fz, with

1,142

On, ={w, €0 : Vh1|K € P;(K), forall K € .th?},
Hﬁz = {pn, € Hper(®) = |y € Hp(K), forall K € 37?2},

see Section 4.2.2 for more details. Recall that the approximation of the solutions u™ = 1 and
u* = 8(x) does not converge. The situation is slightly different for the singular solution u =
—e™YK,(7x), where one observes a monotonic decrease of the relative error in L2(X)-norm for the
singular coefficient g, see Figure 7.3a. However, convergence for the regular part is not obvious in
|lo norm and L%(Q)-norm, see again figure 7.3a. In Figure 7.3b, we provide error curves depending
on the choice of the parameters p, = y,. As expected, the convergence stagnates for larger values

of py, and we also see that decreasing p, from 107> to 107 has no visible effect on the error

curves.
T
100 £ 4 —o—e;2(u) -
£ 1| = eou) o pp =10
[ 1 e(g) 107! | J|-=pp =107
£ 1071p J . b e = 10*‘5‘
g ] g I—p=10"
S g 1| p2=10"°
g 10‘2; E é 10_22 f
~ i E =
=7
1073 ¢ E 1073 ¢ £
kL L L L L I E E‘ | | | R |
1072 107! 1072 107!
h h
() pp = pp = 1075, (b) Relative L? errors on the regular part with

different stabilization parameters p, = p,.

Figure 7.3: Relative errors for u = —Ky(mx)e™.

7.2.2 Mixed variational formulation in Hl}er(Z)

Below, we study the numerical approximation of (6.22), or of its stabilized version (6.56). In order to
test the accuracy of the method described in Chapter 6, we reproduce the experiments conducted
in section 4.2.2, replacing the discrete space V}Ezh) with the discrete space V,El) = Q x H}} x Hg

On = {Vh €Q : wlg € Py(K), forallK € 9;19},
Hy = {gh € Hjier(z) . gplg € Pi(K), forallK € 9‘}12}

Above, T, hQ is a triangulation of Q that is conforming with respect to the interface ¥, and .9712
is a triangulation of ¥, both with meshsize h, however we do not impose that .9712 is the trace
of thg on ¥. Different triangulations F]hQ are used, which are all symmetric with respect to the
interface %, and we choose uniform triangulations 9712. Like in section 4.2.2, elements of Qj have
no matching condition at the interface. The relative errors e;2 and eg are the same as those defined

in section 4.2.2.
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7.2. Numerical experiments for the mixed variational formulations

The code is written in FreeFem++ [32]. Whereas 2D HCT finite elements were used to
discretize the singular part g in [49], we now use P; Lagrange finite elements on the interface .
1

We consider the same setting as in section 4.2.2, where a(x, y) = x and w = 0, with a purely
regular solution u™(x, y) = 1, and with a singular solution u™(x, y) = —K,(rx)e”™ where the
singular coefficient is equal to g(y) = .

The cutoff function we use is the €*(Q) function ¢(x,y) = % (1 + cos(27x)) /<o 5- Notice
that ¢ is prescribed equal to 1 only on the interface in the experiments (compare with definition
4.2.2). The approach in section 6.2 and its theoretical justification in section 6.4 remain valid also
for this choice of ¢. It has been also checked numerically that the results presented below do not
depend on the choice of ¢ provided that ¢ € €1(Q), dyp =0, ¢ly, = 1 and is compactly supported

in x € (—a, a).

Influence of the triangulation. The design of 9719 has a noticeable influence on the numerical
stability of the method. In particular, we observe that the method is unstable with an unstructured
triangulation F]hQ’u”s", see Figure 7.4c. This instability occurs even though 7, hQ’u"Str is symmetric.
On the same figure, we see that one can stabilize the method by using a structured triangulation

.G/'hQ’m, as long as structuring occurs on the geometrical support of ¢ (see Figure 7.4a).

Numerical convergence and stabilization parameter. We observe on Figure 7.5 that the
method using H}} performs significantly better than the one using Hﬁz, compare with Figure 7.3.
Let us remark that, as before, when computing e;2(u) and eg(u), we exclude cells that are adjacent
to the interface.

In Figure 7.5a, we notice that the errors increase when decreasing h: this is likely due to
the fact that already at the most coarse discretization the machine precision had been reached,
and for finer discretizations we can observe the effects of the round-off errors in cells close to
the interface. On the other hand, in Figure 7.5b, we observe that the approximation converges
numerically towards the solution u = —e”"YK,(x) with decent rates with respect to the meshsize.

We observe on Figure 7.6 that the relative error on u, j, decreases proportionally to the
stabilization parameter p;. Moreover, one can still compute the discrete solution for p; = 0, and
it gives the same results as those obtained for p; = 107°. The latter is due to the fact that, for
the chosen mesh sizes, the error due to stabilization is negligible for “small” values of p;. On the
other hand, we observe that one can compute solutions in absence of stabilization. This is because
the non-stabilized problem (6.22) is injective, see proposition 6.4.2, and so is its conforming
discretization and hence the discrete solution exists.

Experiments with more complicated version of @. Now, we take the same geometry, with
ax,y) =x(1 + % cos(ry)) + x?z cos(ry), w = 0 and data fp = iy, — i, Remark that o depends
on y non-trivially, and thus the exact solution is not known. According to section 6.3.2, given the
limiting absorption solution (u, g), which has a vanishing jump according to proposition 6.3.5,
(u, g, g, ug) is equal to the solution (u, g, h, A) of (6.22). Therefore, we expect that upp — Ay, gn—hy,

To our knowledge, in FreeFem++, it is not possible to combine 1D and 2D discretizations. So, in practice, to
represent elements of Hj, we use P; Lagrange finite elements on a single elongated cell in the x-direction, and as many
cells in the y-direction as there are in >, with periodic conditions in x.
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Chapter 7. Simplified variational formulation and numerical experiments

and finally [uy]s go to zero in the appropriate norms |-|, when the triangulations QG/”h2 and F]hQ’m

are refined. We will refer to the norms of these quantities as indicators. First, we observe that
value of each norm |Azlo, |gnlpi(s) and |hyl g1(x), stabilizes quickly with respect to the mesh size
h. Hence, in Figure 7.7, we can report relative errors defined by

— Azl — hy|.
lupe — Ay Cord(g.h) = lgn — hn ‘
| An

d.Cop. 1) = Iz

In figures 7.7a, we see that the first two indicators converge nicely to 0. Regarding the last
indicator (the norm of the jump [u]s), we observe in Figure 7.7b that it converges in L2()-norm
very slowly. This indicates that the jump must be handled carefully with this discretization.

7.3 Numerical experiments for the simplified variational formu-

lations

We are now interested in the discretization of the problems form (7.2), (7.3). The discrete space
is Qp, x H}% where Qy, and Hﬁ are defined in the Section 7.2.2. As before, the triangulations ,G]hQ
is conforming with respect to the interface ¥. Moreover, we impose that 9712 is the trace of
the triangulation 9719, and 57hQ is symmetric with respect to 3. We do not impose continuity
conditions at the interface between u, ; and uy ;. Notice that we do not take into accounts the

cells which touch the interface when we measure the volume errors.

Since the well-posedness of the continuous counterparts of the numerical experiments is not
proved, we focus on few cases. In particular, we take a(x, y) = x. Two functions are approximated,
as u(x,y) = —e™VKy(rx) and u(x,y) = €71 — x?). The former is singular, and the latter is
regular. Finally, several values of w are taken.

We first discretize the sesquilinear form (7.3). Then, we discretize the same problem, but with
the jump handled numerically, i.e., the problem (7.2).
7.3.1 First simplified variational formulation

The first experiment consists in discretizing directly the problem (7.3). This leads to linear system
BUp , = L where:

B, 0 By, Up L,
B=| 0 B, BZg,n , Unh = | Upp |> L=|1L,
Bys, Bnsx, Bs, Gp Ly,

Once again, the mesh has a great influence on the convergence : we observe that the discretiza-
tions do not converge with unstructured symmetric meshes, whereas they do with symmetric
structured meshes, see Figure 7.8. Then, the relative errors with a structured mesh decrease with
the same rate as in previous part, see Figure 7.9. Moreover, the jump converges toward zero in

spite of the absence of explicit constraint during the discretization process.
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7.3.2 Second simplified variational formulation

The second discretization consists in discretizing the problem (7.2) without expanding the defini-

tion of the jump. This now leads to a linear system BUj ;, = L where:

Bp 0 BZg,p Up,h Lp
B=] 0 B, Bzg}n > Unh = Unh | L=|L,
Yps Yoz O Gy 0

This method ensures a zero jump of the regular part with a magnitude to the machine precision

by the discretization of the following sesquilinear form:
L (yp,gul, - yn,zun) kds, with (up, u,) € Q, k € Hfl,er(Z).

It is possible since we use H!(Q p)x H 1(Q,) conforming finite elements. Then, one may observe

in Figure 7.10 the convergence of the numerical solutions, for both the structured mesh %Q’Str

and the unstructured mesh P/‘hQ’unm. However, the convergence rates are clearly deteriorated
in the case of the unstructured mesh. Finally, we compare in Figure 7.11 the approximations of
u(x,y) = —e™VKy(rx), which has a singular part (7.6), and u(x, y) = (1 — x?)e”Y. We observe that
taking w # 0 seems to have a negligible influence on the convergence. Moreover, we also see that

the absence of a singular part in the solution seems to improve the convergence.

7.4 Conclusions

From the standpoint of Chapter 6, we proposed in this chapter a new variational formulation (7.3)
to solve the degenerate PDE introduced in Chapter 4. Numerical experiments have been conducted
on the variational formulations proposed in this thesis. The first observation, compared to the
existing literature, is that the discretization spaces Qy, and Hﬁ seem to be well-fitted to the problem.
Then, the second observation is that the choice of meshes has an important influence on the
convergence of the approximations : the main two issues are whether they are structured or
not, and matching at the interface. The mixed variational formulation studied in Chapter 6
requires structured meshes on the support of a cutoff function ¢. On the other hand, the matching
condition of the meshes at the interface has an influence on how the vanishing jump condition is
taken into account for the second simplified formulation (7.2). Importantly, taking into account
the jump condition as in §7.3.2 gives the best results, and moreover, the approximation even with
unstructured meshes converges numerically. Finally, the computations are faster for the second

simplified formulation, compared to the other ones.

We thank Anouk Nicolopoulos for providing the code she initially developed in her PhD
thesis [50], which was a great help for the numerical experiments.

127



Chapter 7. Simplified variational formulation and numerical experiments

T 0.8 06 0.4 02 0 0.2 04 06 08 1 -1 08 06 04 02 0 02 04 06 08 1

(a) 7, with h = 0.25. (b) 7,2 with h = 0.25.
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(c) e;2(u) errors for u = —K,(rx)e™ with p; = 1075.

Figure 7.4: Influence of structuring F]hQ on the stability of the method.
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(a) Difference between uyp and Ay, and g and h.

Figure 7.7: Experiment with a(x, y) that depends on y non-trivially.

(b) Convergence of the jump [u,].

129



Chapter 7. Simplified variational formulation and numerical experiments

° gvhﬁ,unstr - F]hQ,str

- — — .
107! g E
e |
2 1072 g
[\ = B
o F ]
2 r i
2 k 1
g 107
107
L R R ]
1072 107!
h
Figure 7.8: Relative error e;2(u) for the first simplified formulation with structured meshes F/”hQ’Str
and unstructured meshes ,thg’u”s”, and u = —Ky(x)e™.
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Figure 7.9: Relative errors for the simplified variational formulation with %Q’Str, and u =

—Ko(rx)e™.
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Figure 7.10: Relative errors for the formulation with a discretized jump with u = —e”™YK,(7rx) and

w=0.
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Figure 7.11: Relative errors for the formulation with a discretized jump with P/”hQ’unStr and w = 1.

131



132



Conclusions and perspectives

Conclusions

In this work, we have conducted the analysis of two Maxwell’s problems with sign-changing
coefficients. Both these problems catch specific difficulties of the model of cold plasma from

which they have been derived.

The first part I of this work proposes a mathematical analysis of electromagnetic wave
propagation in a hyperbolic metamaterial. We proved the existence of smooth solution via the
exhibition of a Newton potential. Moreover, radiation conditions in the spirit of Silver-Miiller

radiation conditions were established, which guarantee the uniqueness of the solution.

In the second part II, a degenerate PDE has been studied in detail. In particular, a limiting
absorption principle theorem has been established in Chapter 5. More importantly, the ansatz of
the singular part of the solution proposed in dimension 1 in [35], has been thoroughly refined in
the case of a 2D interface and a source term away from this interface. This allowed to enhance
in Chapter 6 the results obtained in [49]. In particular, we proved that the proposed method is
consistent with the limiting absorption principle. Moreover, we proved in Chapter 5 and 6, using
different techniques, that the regular part of the limiting absorption solution has a vanishing
jump through the interface. This has naturally led in Chapter 7 to consider simple but efficient
discrete problems and their continuous counterparts.

Perspectives

The first part of the thesis can obviously be considered as a preliminary work. The continuation of
this work could consist in investigating the well-posedness of the problem expressed as boundary
integral equation. In that case, the very first question to address is on which kind of domain this
problem is well-posed. Can the domain be bounded or semi-bounded ? Are there constraints on
the shape or the regularity of the boundary ? For the time being, these are open questions, but
we refer to [29, 28] for interesting works in this direction.

The second part of the thesis is ended by two short-term prospects. On one hand, the
Assumption 5.5.1 may lead to another interesting framework in which the variational formulation
should be considered. On the other hand, the work done has shown the relevance of the simplified
variational formulation 7.3, which justifies its further numerical analysis. Aside from this, only
a scalar function « has been studied in detail. Therefore, it should be possible to replace it by a

tensor of the form = aH, with H an elliptic hermitian matrix. Finally, another prospective is the



model described in Section 2.4.2 for which an even more general form of the tensor is suggested.
Of course, all these questions are open for the full 3D Maxwell system, whose mathematical and
numerical analysis is the ultimate goal of this research.
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Résumé : De nos jours, les plasmas sont principale-
ment utilisés a des fins industrielles. L’un des exemples
les plus fréquemment cités d’utilisation industrielle est
la production d’énergie électrique via des réacteurs nu-
cléaires a fusion. Pour contenir le plasma correctement
a l'intérieur du réacteur, un champ magnétique est im-
posé en arriere-plan, et la densité et la température du
plasma doivent étre précisément controlées. Cela est ef-
fectué en envoyant des ondes électromagnétiques a des
fréquences et dans des directions spécifiques en fonc-
tion des caractéristiques du plasma.

La premiére partie de cette these de doctorat est consa-
crée a I’étude du modele du plasma avec un fort champ
magnétique en arriere-plan, ce qui correspond & un mé-
tamatériau hyperbolique. L’objectif est d’étendre les
résultats existant en 2D au cas 3D et de dériver une
condition de radiation. Nous introduisons une sépa-
ration des champs électriques et magnétiques ressem-
blant a la décomposition TE et TM habituelle, puis

nous présentons quelques résultats sur les deux pro-
blémes résultants. Les résultats sont dans un état tres
partiel et constituent un brouillon approximatif sur le
sujet.

La deuxiéme partie étudie 'EDP dégénérée associée
aux ondes résonantes « lower-hybrid » dans le plasma.
Le probléeme aux limites associé est bien posé dans un
cadre variationnel « naturel ». Cependant, ce cadre
n’inclut pas le comportement singulier présenté par les
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du point de vue physique car il induit le chauffage du
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industrial purpose. One of the most frequently cited
example of industrial use is electric energy production
via fusion nuclear reactors. Then, in order to contain
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gnetic field is imposed, and the density and tempera-
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is done by sending electromagnetic waves at specific
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ristics of the plasma.
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field, which corresponds to a hyperbolic metamaterial.
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troduces a splitting of the electric and magnetic fields
resembling the usual TE and TM decomposition, then,

it gives some results on the two resulting problems.
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behavior presented by the physical solutions obtained
via the limiting absorption principle. Notice that this
singular behavior is important from the physical point
of view since it induces the plasma heating mentioned
before. One of the key results of this second part is the
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