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CHAPITRE 1

Ondes électromagnétiques dans les plasmas (in french)
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1.1 Généralités sur les plasmas

Le plasma est le quatrième état de la matière et la forme de matière la plus abondante dans
l’univers. Il se caractérise par la présence de particules chargées et d’ions, dans des proportions
et des densités qui peuvent varier dans l’espace et le temps. La température d’un plasma est
généralement beaucoup plus élevée que la température ambiante, dépassant souvent plusieurs
milliers de kelvins. Sur Terre, les plasmas sont principalement utilisés à des fins industrielles.
L’un des exemples d’utilisation industrielle les plus fréquemment cités est la production d’énergie
électrique par le biais de réacteurs nucléaires à fusion. En fait, cela motive de nombreux aspects de
la recherche universitaire et industrielle. Différents types de réacteurs sont étudiés de nos jours,
comme les Tokamaks [37], ou les Stellarators [39, Chapitre 17].

Il y a plusieurs défis à relever pour obtenir une réaction de fusion stable à l’intérieur de ces
réacteurs. Nous en présentons ici trois. Le premier est le confinement du plasma à l’intérieur
du réacteur. Pour ce faire, plusieurs dispositifs sont disposés de manière à imposer des champs
magnétiques poloïdaux et toroïdaux et un courant électrique toroïdal [36], cf. figure 1.1. Il en
résulte qu’un champmagnétique hélicoïdal est imposé au plasma. Néanmoins, ce type d’installation
n’est pas suffisant pour empêcher les instabilités du plasma. Afin de contenir correctement le
plasma, des mesures de la densité du plasma doivent être effectuées. En raison de la température
extrême, une mesure intrusive est impossible. Ensuite, le deuxième défi consiste à contrôler la
densité du plasma par des méthodes de réflectométrie [43, 40, 30, 33]. Pour ce faire, des ondes
électromagnétiques de différentes fréquences sont envoyées, puis on mesure la réponse. Enfin, le
dernier défi est le chauffage du plasma, et se fait en envoyant des ondes électromagnétiques à des
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fréquences et des directions spécifiques en fonction des caractéristiques du plasma. Théoriquement,
il existe actuellement trois types d’ondes utilisables [39, Chapitre 12] : les ondes de fréquence
cyclotron ionique, les ondes de fréquence cyclotron électronique et les ondes « lower-hybrid».

Fig. 1.1 : Représentation des champs magnétiques et du courant à l’intérieur d’un tokamak1.

Pour relever ces défis, une description fine des champs électromagnétiques à l’intérieur du
plasma est nécessaire. Ce rapport décrit le travail effectué sur deux configurations très simplifiées.
Les deux configurations considèrent un plasma magnétisé avec en arrière-plan un champ ma-
gnétique constant 𝑩0 = 𝐵0𝒆𝑧. La première configuration donne lieu à une équation aux dérivées
partielles hyperbolique non standard dans l’espace. La seconde configuration consiste en l’étude
de la résonance « lower-hybrid», qui conduit à une EDP dégénérée à changement de signe.

1.2 Ondes dans les plasmas

Les champs électromagnétiques dans un plasma sont décrits par quatre fonctions vectorielles
dans l’espace-temps :

• le champ électrique 𝑬,

• le déplacement électrique 𝑫,

• le champ magnétique 𝑯,

• le champ d’induction magnétique ou champ magnétisant 𝑩.

Ces quatre champs sont liés par les bien connues équations de Maxwell :

|
|
|
|
|
|
|
|
|

𝒄𝒖𝒓𝒍 𝑯 = 𝒋 + 𝜕𝑫
𝜕𝑡

,

𝒄𝒖𝒓𝒍 𝑬 = −𝜕𝑩
𝜕𝑡

,

div𝑫 = 𝜌,

div𝑩 = 0

(1.1)

1Source : https://www.iter.org/newsline/-/3037
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où 𝒋 est le vecteur de densité de courant et 𝜌 est la densité de charge. En outre, elle est complétée
par les deux relations constitutives qui s’appliquent à l’échelle microscopique :

𝑫 = 𝜀0𝑬, 𝑩 = 𝜇0𝑯,

où 𝜀0 est la permittivité du vide et 𝜇0 est la perméabilité du vide. D’autre part, le milieu considéré
est un plasma, qui se caractérise par la présence de particules libres chargées électriquement,
telles que des électrons ou des ions. Par conséquent, une densité de courant 𝒋 est induite par le
déplacement des charges à l’intérieur du plasma. La présence d’une telle densité de courant au
sein du plasma fait une différence majeure avec les milieux classiques. Plus précisément, nous
considérons un plasma froid magnétisé sans collision.

Le plasma peut être décrit par deux approches qui ne sont pas équivalentes : l’approche
fluide avec la densité des particules et des électrons et l’approche cinétique avec la fonction
de distribution des particules. Notre plasma étant considéré comme froid, l’approche fluide est
pertinente. L’approche cinétique repose sur la théorie de Boltzmann et ne sera pas notre sujet
d’intérêt. Le lecteur intéressé pourra se référer à [55, Chapitre 8, 56, Chapitre 4].

Par conséquent, étant donné l’ensemble des différentes espèces d’ions 𝑆, nous pouvons dé-
composer le courant de plasma comme suit

𝒋 = ∑
𝑠∈𝑆

𝒋𝑠 = ∑
𝑠∈𝑆

𝒩𝑠𝑞𝑠𝒗𝑠

où, étant donné une espèce ionique 𝑠 ∈ 𝑆, 𝒩𝑠 est la densité ionique, c’est-à-dire le nombre
d’ions par unité de volume, 𝑞𝑠 est la charge ionique et 𝒗𝑠 est la vitesse. La vitesse et les champs
électromagnétiques sont liés par l’équation de Navier-Stokes et la force de Lorentz :

𝒩𝑠𝑚𝑠 (
𝜕𝒗𝑠
𝜕𝑡

+ (𝒗𝑠 ⋅ ∇) 𝒗𝑠) = 𝒩𝑠𝑞𝑠 (𝑬 + 𝒗𝑠 × 𝑩) − div �,

où � est le tenseur de contrainte du fluide.
À ce stade, plusieurs hypothèses de simplification sont faites. Soit (𝒆1, 𝒆2, 𝒆3) une base ortho-

normée de ℝ3, avec (𝑥1, 𝑥2, 𝑥3) les coordonnées associées. Tout d’abord, le plasma est froid et sans
collision. Par conséquent, le tenseur de contrainte fluide � est négligé. Ensuite, nous linéarisons
l’équation autour de l’équilibre (𝒗𝑠, 𝑬, 𝑩) = (0, 0, 𝑩0) où 𝑩0 = 𝐵0𝒆3 est le champ magnétique en
arrière-plan imposé au plasma. Nous supposons également que les densités d’ions 𝒩𝑠 ne varient
pas dans le temps. Par conséquent, en développant 𝒗𝑠, 𝑬, 𝑩 au premier ordre et en substituant ces
quantités dans l’équation de Navier-Stokes, on obtient

𝜕𝒗𝑠
𝜕𝑡

=
𝑞𝑠
𝑚𝑠

(𝑬 + 𝒗𝑠 × 𝑩0) .

Enfin, nous supposons que nous sommes en régime harmonique, c’est-à-dire que toutes les
quantités 𝑎(𝒙, 𝑡) qui dépendent du temps peuvent être développées comme 𝑎(𝒙, 𝑡) = Re (𝑎̂(𝒙)𝑒−𝑖𝜔𝑡).
Les équations ci-dessus deviennent alors

−𝑖𝜔 ̂𝒗𝑠 =
𝑞𝑠
𝑚𝑠

( ̂𝑬 + ̂𝒗𝑠 × (𝐵0𝒆3)) .

Les vecteurs propres de l’opérateur 𝒆3 × ⋅ sont (𝒆+, 𝒆−, 𝒆3) avec 𝒆± = 1
√2

(𝒆1 ∓ 𝑖𝒆2), et ils constituent
une base orthonormée de l’espace vectoriel complexe ℂ3. Dans cette base, nous avons

̂𝑣𝑠,± = (
𝑞𝑠
𝑚𝑠

) 𝑖
𝜔 ∓ 𝜔𝑐

𝐸̂±, ̂𝑣𝑠,𝑧 = (
𝑞𝑠
𝑚𝑠

) 𝑖
𝜔
𝐸̂𝑧,

3
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avec 𝜔𝑐,𝑠 =
𝑞𝑠𝐵0
𝑚𝑠

, la fréquence cyclotron associée à l’espèce ionique 𝑠. On remarque que ̂𝑣𝑠,± =
1
√2

( ̂𝑣𝑠,𝑥 ± 𝑖 ̂𝑣𝑠,𝑦) et 𝐸̂± = 1
√2

(𝐸̂𝑥 ± 𝑖𝐸̂𝑦). Ensuite, la densité de courant ̂𝒋 peut être exprimée en

fonction du champ électrique ̂𝑬 dans la base (𝒆1, 𝒆2, 𝒆3) :

̂𝒋𝑠 = 𝒩𝑠𝑞𝑠 ̂𝒗𝑠 = �𝑠 ̂𝑬, avec �𝑠 = 𝑖𝜔𝜀0�𝑠 et �𝑠 =

⎛
⎜
⎜
⎜
⎝

−
𝜔2
𝑝,𝑠

𝜔2−𝜔2
𝑐,𝑠

−𝑖
𝜔𝑐,𝑠𝜔2

𝑝,𝑠

𝜔(𝜔2−𝜔2
𝑐,𝑠)

0

𝑖
𝜔𝑐,𝑠𝜔2

𝑝,𝑠

𝜔(𝜔2−𝜔2
𝑐,𝑠)

−
𝜔2
𝑝,𝑠

𝜔2−𝜔2
𝑐,𝑠

0

0 0
𝜔2
𝑝,𝑠

𝜔2

⎞
⎟
⎟
⎟
⎠

.

Les matrices �𝑠 et �𝑠 sont respectivement appelées tenseur de conductivité et tenseur de suscepti-

bilité électrique. Nous introduisons également la fréquence du plasma 𝜔𝑝,𝑠 = √
𝒩𝑠𝑞2𝑠
𝑚𝑠𝜀0

.

Remark 1.2.1. L’approche peut être généralisée à n’importe quel champ magnétique en arrière-
plan 𝑩0(𝒙). En fait, étant donné un point 𝒙 𝑑𝑎𝑛𝑠ℝ3, le tenseur de susceptibilité électrique �𝑠(𝒙)
est toujours diagonal lorsqu’il est exprimé dans la base constituée par les vecteurs propres de
l’opérateur 𝑩0(𝒙) × ⋅, cf. [31, Chapitre 2].

Enfin, si l’on revient aux équations de Maxwell exprimées en régime harmonique, on obtient

|
𝒄𝒖𝒓𝒍 𝑩̂ = −𝑖𝜔

𝑐2
� ̂𝑬,

𝒄𝒖𝒓𝒍 ̂𝑬 = 𝑖𝜔𝑩̂,
(1.2)

où 𝑐 = (𝜇0𝜀0)
−1/2, et le tenseur diélectrique du plasma froid est donné par

� = 𝕀3 +∑
𝑠∈𝑆

�𝑠 =
⎛
⎜
⎜
⎝

𝛼 −𝑖𝛿 0

𝑖𝛿 𝛼 0

0 0 𝛽

⎞
⎟
⎟
⎠

,

𝛼 = 1 −∑
𝑠∈𝑆

𝜔2
𝑝,𝑠

𝜔2 − 𝜔2
𝑐,𝑠
, 𝛿 = 1

𝜔
∑
𝑠∈𝑆

𝜔𝑐,𝑠𝜔2
𝑝,𝑠

𝜔2 − 𝜔2
𝑐,𝑠
, 𝛽 = 1 −

∑𝑠∈𝑆 𝜔2
𝑝,𝑠

𝜔2 ,

𝜔𝑐,𝑠 =
𝑞𝑠𝐵0
𝑚𝑠

, 𝜔2
𝑝,𝑠 =

𝒩𝑠𝑞2𝑠
𝑚𝑠𝜀0

.

(1.3)

Faisons quelques commentaires sur lemodèle ci-dessus. Tout d’abord, le tenseur diélectrique du
plasma froid varie en fonction de la variable d’espace 𝒙 et de la fréquence du régime harmonique 𝜔.
En effet, les fréquences du plasma 𝜔𝑝,𝑠 dépendent des densités d’ions 𝒩𝑠

2, et la dépendance en
la fréquence 𝜔 indique que le modèle est manifestement dispersif. Deuxièmement, � n’est pas
nécessairement positif pour toute fréquence en tout point de l’espace. Cette observation est à
la base de cette thèse et sera discutée dans les deux paragraphes suivants. D’autre part, le cas �

uniformément positif ou uniformément négatif correspond aux équations de Maxwell classiques
qui ont déjà été étudiées du point de vue mathématique depuis l’établissement de ces équations.

Le modèle ci-dessus a été largement étudié par la communauté des physiciens, et nous
renvoyons aux monographies suivantes [55, 56, 39].

2𝜔𝑝,𝑠 ne dépend pas de la fréquence 𝜔, car 𝒩𝑠 ne dépend pas du temps.
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1.3. Plasma dans un champ magnétique fort

1.3 Plasma dans un champ magnétique fort

Comme indiqué dans le dernier paragraphe, le tenseur diélectrique � n’est pas nécessairement
positif. Si nous considérons la fréquence globale du plasma 𝜔2

𝑝 = ∑𝑠∈𝑆 𝜔2
𝑝,𝑠, alors nous avons

𝛽 = 1 −
𝜔2
𝑝

𝜔2 négatif chaque fois que 𝜔 < 𝜔𝑝. D’autre part, nous pouvons clairement trouver les
fréquences 𝜔𝑝,𝑠 et 𝜔𝑐,𝑠 de telle sorte que le bloc 2 × 2

(
𝛼 −𝑖𝛿

𝑖𝛿 𝛼
)

est défini positif, ce qui est équivalent à 𝛼 > |𝛿|. Afin de simplifier l’analyse, nous supposerons
que le champ magnétique en arrière-plan 𝑩0 a une magnitude très importante, de telle sorte que
les fréquences cyclotron 𝜔𝑐,𝑠 sont très grandes par rapport à la fréquence globale du plasma 𝜔𝑝.
Ensuite, compte tenu des expressions (1.3) de 𝛼 et 𝛿, le tenseur diélectrique peut être approximé
comme suit

� =
⎛
⎜
⎜
⎜
⎝

1 0 0

0 1 0

0 0 1 −
𝜔2
𝑝

𝜔2

⎞
⎟
⎟
⎟
⎠

. (1.4)

Nous supposons dans la suite que cette approximation, que nous appelons limite du champ
magnétique fort, est valable dans tout l’espace libre, et que 𝜔𝑝 ne varie pas. L’objectif de la
première partie de cette thèse est donc d’étudier le problème posé dans l’espace libre :

|
|
|
|
|
|

Trouver ̂𝑬, 𝑩 tels que

𝒄𝒖𝒓𝒍 𝑩 + 𝑖𝜔
𝑐2

� ̂𝑬 = ̂𝒋,

𝒄𝒖𝒓𝒍 ̂𝑬 − 𝑖𝜔𝑩 = 𝒎̂,

(1.5)

où certains termes sources 𝒋,𝒎 ont été ajoutés.

Alors que de nombreux travaux sont consacrés aux modèles isotropes, c’est-à-dire aux modèles
dans lesquels la permittivité diélectrique et la perméabilité magnétique sont toutes deux des
scalaires [10, 47, 11, 15, 16, 44, 8], peu de travaux sont consacrés aux milieux anisotropes, surtout
si le tenseur de permittivité diélectrique ou de perméabilité magnétique n’est plus de signe défini.
Remarquons qu’il existe des travaux consacrés à l’étude des équations de Maxwell avec des
tenseurs de perméabilité magnétique et de permittivité diélectrique elliptiques anisotropes [19,
21, 20], ce qui n’est malheureusement pas notre cas. Nous étudions ici ce qui est appelé des
métamatériaux hyperboliques, voir [53] et les références à l’intérieur. À notre connaissance, peu
d’analyses mathématiques [12, 22] sont consacrées à l’étude des métamatériaux hyperboliques.
On notera que les problèmes hyperboliques dans le domaine des fréquences peuvent apparaître
dans la dynamique des fluides, voir [28, 29]. En outre, les problèmes hyperboliques en domaines
bornés ont été étudiés pour la première fois, à notre connaissance, dans [38].

Notre modèle a déjà été étudié dans le cas de champs électromagnétiques 2D, c’est-à-dire que
le champ magnétique et le champ électrique sont indépendants de la variable 𝑦 dans [22] dans le
régime harmonique ; voir [7, 6] pour son équivalent dans le domaine temporel.
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Chapitre 1. Ondes électromagnétiques dans les plasmas (in french)

Remark 1.3.1. Le système peut être réécrit dans le domaine temporel comme suit :

𝒄𝒖𝒓𝒍 𝑩 − 1
𝑐2
𝜕𝑡𝑬 = 𝜇0𝑱𝑝,

𝒄𝒖𝒓𝒍 𝑬 + 𝜕𝑡𝑩 = 0.

où 𝜕𝑡𝑱𝑝 = 𝜔2
𝑝𝜀0(𝑬 ⋅ 𝒆3)𝒆3.

1.4 Plasma avec une densité variable

1.4.1 Plasma à une espèce

Lorsqu’une onde électromagnétique est envoyée à l’intérieur d’un plasma, elle peut transférer
de l’énergie aux particules et produire un chauffage du plasma dans une région localisée. Ce
phénomène est lié à ce que l’on appelle les ondes résonantes et apparaît avec la variation dans
l’espace des densités d’ions 𝒩𝑠(𝒙). Pour simplifier, nous supposons que le plasma est constitué
d’une seule espèce d’ions de densité 𝒩𝑒(𝒙). Par conséquent, le tenseur diélectrique

�(𝒙) =
⎛
⎜
⎜
⎝

𝛼(𝒙) −𝑖𝛿(𝒙) 0

𝑖𝛿(𝒙) 𝛼(𝒙) 0

0 0 𝛽(𝒙)

⎞
⎟
⎟
⎠

,

varie également dans l’espace, où 𝛼, 𝛿, 𝛽 sont donnés par (1.3), ce qui peut être écrit dans notre
cas comme

𝛼 = 1 −
𝜔2
𝑝

𝜔2 − 𝜔2
𝑐
, 𝛿 = 1

𝜔
𝜔𝑐𝜔2

𝑝

𝜔2 − 𝜔2
𝑐
, 𝛽 = 1 −

𝜔2
𝑝

𝜔2 ,

𝜔𝑐 =
𝑞𝑒𝐵0
𝑚𝑐

, 𝜔2
𝑝 =

𝑞2𝑒
𝑚𝑒𝜀0

𝒩𝑒.

Nous supposons que la densité du plasma 𝒩𝑒 varie dans l’espace de sorte que nous ayons

𝛼(𝒙) = 1 − 𝐶𝛼,𝜔𝒩𝑒(𝒙), 𝛿(𝒙)= 𝐶𝛿,𝜔𝒩𝑒(𝒙), 𝛽(𝒙) = 1 − 𝐶𝛽,𝜔𝒩𝑒(𝒙). (1.6)

Nous considérons une résonance « lower-hybrid» dans le plasma, voir [55, Chapter 2-6] et les
récents travaux [35, 26, 13, 14, 27, 25, 48, 50, 49], qui est caractérisée par le fait que 𝛼 = 0 sur une
courbe à l’intérieur de la région. Comme dans les travaux cités ci-dessus, nous nous intéresserons
particulièrement aux cas où la densité 𝒩𝑒(𝒙) est telle que le signe de 𝛼 change continûment entre
deux sous-régions séparées par une interface.

Avec les notations évidentes, 𝑬 = 𝐸1𝒆1 + 𝐸2𝒆2 + 𝐸3𝒆3, etc. Nous supposerons dans cette partie
que toutes les quantités sont indépendantes de 𝑥3, la variable correspondant à la direction du
champ magnétique extérieur, de sorte que 𝐸1 = 𝐸1(𝑥1, 𝑥2), etc. Alors, en développant la première
équation de (1.2), on a

⎛
⎜
⎜
⎝

𝜕2𝐵3
−𝜕1𝐵3

𝜕1𝐵2 − 𝜕2𝐵1

⎞
⎟
⎟
⎠

= −𝑖𝜔
𝑐2

⎛
⎜
⎜
⎝

𝛼𝐸1 − 𝑖𝛿𝐸2
𝑖𝛿𝐸1 + 𝛼𝐸2

𝛽𝐸3

⎞
⎟
⎟
⎠

.

On observe que 𝐸1, 𝐸2, 𝐵3 et 𝐸3, 𝐵1, 𝐵2 sont indépendants dans l’équation ci-dessus. Cette observa-
tion est également valable pour la deuxième équation de (1.2). Ainsi, grâce à la structure diagonale
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de �, le système de Maxwell (1.2) peut être divisé en deux systèmes indépendants qui dissocient 𝐸3,
𝐁⟂ = 𝐵1𝐞1 +𝐵2𝐞2 d’une part, et 𝐄⟂ = 𝐸1𝐞1 +𝐸2𝐞2, 𝐵3 d’autre part. Au vu de l’équation précédente,
nous définissons les deux opérateurs différentiels suivants :

𝐜𝐮𝐫𝐥⟂ 𝑓 = (
𝜕2𝑓

−𝜕1𝑓
) , curl⟂ (𝑓1𝐞1 + 𝑓2𝐞2) = 𝜕1𝑓2 − 𝜕2𝑓1.

Le système pour le mode Ordinaire est donc le suivant :

{
𝐜𝐮𝐫𝐥⟂ 𝐸3 = 𝑖𝜔𝐁⟂,

curl⟂ 𝐁⟂ = −
𝑖𝜔𝛽
𝑐2

𝐸3,
(O-mode)

et le mode eXtraodinaire :

{
curl⟂ 𝐄⟂ = 𝑖𝜔𝐵3,

𝐜𝐮𝐫𝐥⟂ 𝐵3 = −𝑖𝜔
𝑐2

�⟂𝐄⟂,
avec �⟂ = (

𝛼 −𝑖𝛿

𝑖𝛿 𝛼
) . (X-mode)

Pour la discussion qui suit, nous aurons besoin d’introduire quelques notations auxiliaires.
Soit 𝐱⟂ = 𝑥1𝐞1 + 𝑥2𝐞2, ∆⟂ 𝑣 = 𝜕11𝑣 + 𝜕22𝑣, div⟂ 𝐯 = 𝜕1𝑣1 + 𝜕2𝑣2 et ∇⟂ 𝑣 = 𝜕1𝑣 𝐞1 + 𝜕2𝑣 𝐞2. Dans ce
cas, il est évident que 𝐜𝐮𝐫𝐥⟂ 𝑣 = −𝑅𝜋/2 ∇⟂ 𝑣 et curl⟂ 𝐯 = − div⟂ 𝑅𝜋/2𝐯, où 𝑅𝜋/2 = ( 0 −1

1 0 ) est la
matrice de rotation 𝜋/2 dans le plan orienté (𝐞1, 𝐞2). En particulier, curl⟂ 𝐜𝐮𝐫𝐥⟂ 𝑣 = −∆⟂ 𝑣.

Concentrons-nous maintenant sur les équations régissant les inconnues scalaires 𝐸3 et 𝐵3.
L’EDP du second ordre dérivée du système pour le mode ordinaire est −∆⟂ 𝐸3 =

𝜔2𝛽
𝑐2 𝐸3. Dans le

cas où le signe de 𝛽 change continuellement de signe, cette équation rappelle une équation d’Airy,
cf. [35].

D’autre part, l’EDP du second ordre dérivée du système (X-mode) est la suivante :

div⟂ (𝑅𝜋/2�−1⟂ 𝑅𝜋/2 ∇⟂ 𝐵3) =
𝜔2

𝑐2
𝐵3.

Nous supposerons que le tenseur �⟂ est inversible partout dans la région, plus précisément que
𝛼2(𝐱⟂) − 𝛿2(𝐱⟂) ≠ 0 pour tout 𝐱⟂, et donc que l’expression ci-dessus est bien définie. Définissons
le tenseur 2 × 2 suivant :

� ≔ 𝑐2𝑅𝜋/2�−1⟂ 𝑅𝜋/2 =
𝑐2

𝛿2 − 𝛼2
(
𝛼 𝑖𝛿

−𝑖𝛿 𝛼
) .

Ensuite, étant donné que 𝛼 et 𝛿 dépendent de la variable d’espace 𝐱⟂ seulement par l’intermé-
diaire de la densité du plasma 𝒩𝑒(𝐱⟂), 𝛼 et 𝛿 ont les mêmes courbes de niveau. De plus, en gardant
à l’esprit (1.6), 𝛼 = 1 − 𝛿/𝛿+ où 𝛿+ = 𝐶𝛿,𝜔/𝐶𝛼,𝜔.

Comme indiqué précédemment, nous supposons que le coefficient 𝛼(𝐱⟂) s’annule sur une
interface 𝐼. Compte tenu de la dernière remarque, le tenseur �(𝐱⟂) est constant sur 𝐼, et est égal à
� = 𝑖𝔸, avec

𝔸 = 𝑐2

𝛿+2
(
0 −𝛿+

𝛿+ 0
) ,
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qui est une matrice antisymétrique à valeurs réelles. Il s’ensuit que nous pouvons décomposer
�(𝐱⟂) comme

�(𝒙⟂) = − 𝛼0(𝐱⟂)ℍ(𝐱⟂)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�0(𝐱⟂)

+𝑖𝔸, (1.7)

où 𝛼0 =
𝑐2𝛼

𝛼2−𝛿2 , et ℍ(𝐱⟂) est une matrice hermitienne donnée par

ℍ(𝐱⟂) = (
1 −𝑖 (𝛿(𝐱⟂) + 𝛼(𝐱⟂)/𝛿+)

𝑖 (𝛿(𝐱⟂) + 𝛼(𝐱⟂)/𝛿+) 1
) .

Dans ce qui suit, nous supposerons que ℍ(𝐱⟂) est définie positive dans toute la région de calcul.
Cela implique en particulier que le déterminant deℍ(𝐱⟂) est positif pour tout 𝐱⟂, ce qui conduit à

|𝛿(𝐱⟂) + 𝛼(𝐱⟂)/𝛿+| < 1.

Puisque 𝔸 est antisymétrique, div⟂(𝔸∇⟂ 𝐵3) = 0, et l’EDP du second ordre régissant 𝐵3 devient
donc

− div⟂ (�0 ∇⟂ 𝐵3) − 𝜔2𝐵3 = 0. (1.8)

Nous supposons que la densité des électrons 𝒩𝑒 est 𝒞 2-régulière, de sorte que 𝛼0 et ℍ soient
également 𝒞 2-réguliers. Étant donné 𝐱⟂ sur l’interface 𝐼, notons 𝐧(𝐱⟂) la normale à l’interface
au point 𝐱⟂. Alors, pour ℎ un réel suffisamment petit, nous pouvons écrire le développement en
série de 𝛼0 :

𝛼0(𝐱⟂ + ℎ𝐧(𝐱⟂)) =
𝜕𝛼0
𝜕𝐧

(𝐱⟂)ℎ +
𝜕2𝛼0
𝜕𝐧2

(𝐱⟂)ℎ2 + 𝒪(ℎ3).

Par conséquent, nous supposons à partir de maintenant que |𝛼0(𝐱⟂)| se comporte dans un voisinage
de l’interface 𝐼 = {𝛼0(𝐱⟂) = 0} comme dist(𝐱⟂, 𝐼 ) et ne dégénèrent pas au sens où il existe une
constante 𝑐 > 0 telle que | 𝜕𝛼0𝜕𝐧 (𝐱⟂)| > 𝑐 pour tout 𝐱⟂ ∈ 𝐼. Nous supposons également que l’interface
𝐼 est une boucle 𝐶1 (sans auto-intersection).

Ainsi, considérer le modèle dérivé du mode eXtraodinaire avec 𝐵3 inconnu dans le voisinage
de l’interface conduit à une EDP elliptique dégénérée. La communauté mathématique étudie les
modèles dérivés du cadre des ondes dans le plasma froid depuis une décennie environ, cf. [25,
2, 26, 7, 42]. La résolution de cette équation sera l’objectif de la deuxième partie de cette thèse.
Ce problème a déjà été étudié dans [49], où une méthode numérique basée sur une formulation
variationnelle mixte a été proposée.

Remark 1.4.1. Remarquez que d’autres hypothèses peuvent être faites sur le comportement de
𝛼0 : dist(𝐱⟂, 𝐼 )2, dist(𝐱⟂, 𝐼 )3, ou même une puissance fractionnaire. Cela signifierait que 𝜕𝛼0

𝜕𝐧 (𝐱⟂)
s’annule pour tout 𝐱⟂ sur l’interface. En particulier, cela conduirait à un type de singularité
différent de celui étudié dans cette thèse. De plus, cela ne semble pas pertinent d’un point de vue
physique puisque la densité du plasma est régulière en pratique, et nous excluons clairement la
présence de chocs.

1.4.2 Plasma général

Le problème décrit ci-dessous n’a pas été étudié dans cette thèse. Néanmoins, nous pensons qu’il
est intéressant de le formaliser, car il apparaît que de tels problèmes peuvent être liés à la littérature
existante, ouvrant ainsi de nouvelles perspectives.
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L’argument développé pour un plasma à une espèce ne peut pas être appliqué sans adaptation
à un plasma réel, qui a en général 2 espèces au moins (les électrons et les ions). Dans ce cas, en
utilisant (1.3), nous avons

𝛼(𝒙) = 1 −∑
𝑠∈𝑆

𝐶𝑠,𝛼,𝜔𝒩𝑠(𝒙), 𝛿(𝒙) = ∑
𝑠∈𝑆

𝐶𝑠,𝛿 ,𝜔𝒩𝑠(𝒙),

avec 𝐶𝑠,𝛼,𝜔 > 0 et 𝐶𝑠,𝛿 ,𝜔 ∈ ℝ pour toute espèce 𝑠 ∈ 𝑆. On notera que 𝐶𝑠,𝛿 ,𝜔 > 0 (respectivement
𝐶𝑠,𝛿 ,𝜔 < 0) pour les espèces chargées positivement (resp. négativement), comme l’indiquent les
équations (1.3).

Comme précédemment, nous supposons que le problème est indépendant de 𝑥3, de sorte que
le problème peut être séparé en modes ordinaires et extraordinaires, et que le signe de 𝛼 change à
travers une interface 𝐼. Nous supposons que les densités des espèces d’ions sont au moins 𝒞 2, et la
même hypothèse s’applique à 𝛿 et 𝛼. En outre, |𝛼(𝐱⟂)| se comporte dans un voisinage de l’interface
𝐼 = {𝛼(𝐱⟂) = 0} comme dist(𝐱⟂, 𝐼 ) et ne dégénèrent pas au sens où il existe une constante 𝑐 > 0
telle que | 𝜕𝛼𝜕𝐧 (𝐱⟂)| > 𝑐 pour tout 𝐱⟂ ∈ 𝐼.

Si nous reproduisons l’analyse précédente, le blocage provient du fait que 𝛼(𝐱⟂) et 𝛿(𝐱⟂)
ne partagent pas les mêmes courbes de niveau. Par conséquent, la matrice �(𝐱⟂) n’est plus
constante sur l’interface 𝐼, et nous ne pouvons pas définir une matrice constante 𝔸 telle que la
décomposition (1.7) soit valide.

Nous pouvons néanmoins formaliser le problème de la manière suivante. La valeur de � sur
l’interface est �(𝐱⟂) = 𝑖𝔸(𝐱⟂) avec

𝔸(𝐱⟂) =
𝑐2

𝛿(𝐱⟂)
2 (

0 −𝛿(𝐱⟂)

𝛿(𝐱⟂) 0
) , with 𝐱⟂ ∈ 𝐼.

Il est possible d’étendre la définition de cette matrice à l’ensemble du domaine. Pour tout 𝐱⟂
dans le domaine, il existe 𝒫 (𝐱⟂) ∈ 𝐼, la projection de 𝐱⟂ sur l’interface 𝐼, et 𝑠(𝐱⟂) ∈ ℝ tel que
𝐱⟂ = 𝒫 (𝐱⟂) + 𝑠(𝐱⟂)𝐧(𝒫 (𝐱⟂)), où 𝐧(𝐲⟂) est le vecteur normal unitaire à l’interface au point
𝐲⟂ ∈ 𝐼. Nous pouvons raisonnablement supposer que la dernière décomposition est unique dans
le domaine qui nous intéresse. Par conséquent, nous étendons facilement 𝔸 dans l’ensemble du
domaine comme suit :

𝔸(𝐱⟂) =
𝑐2

𝛿(𝒫 (𝐱⟂))
2 (

0 −𝛿(𝒫 (𝐱⟂))

𝛿(𝒫 (𝐱⟂)) 0
) .

Ensuite, nous factorisons la matrice � = −𝛼0ℍ + 𝑖𝔸 comme précédemment, avec 𝛼0 =
𝑐2𝛼

𝛼2−𝛿2 et

ℍ(𝐱⟂) = (
1 𝑖 ̃𝛿(𝐱⟂)

−𝑖 ̃𝛿(𝐱⟂) 1
) , ̃𝛿(𝐱⟂) =

𝛿(𝐱⟂) (𝛿(𝒫 (𝐱⟂)) − 𝛿(𝐱⟂)) + 𝛼(𝐱⟂)2

𝛿(𝒫 (𝐱⟂))𝛼(𝐱⟂)
.

En raison de l’hypothèse de régularité, ̃𝛿 ne dégénère pas dans le voisinage de l’interface. En effet,
le développement de 𝛼 et 𝛿 pour ℎ ∈ ℝ petit et 𝐱⟂ ∈ 𝐼, c’est-à-dire,

𝛿(𝐱⟂ + ℎ𝐧(𝐱⟂)) = 𝛿(𝐱⟂) +
𝜕𝛿
𝜕𝐧

(𝐱⟂)ℎ + 𝒪(ℎ2),

𝛼(𝐱⟂ + ℎ𝐧(𝐱⟂)) =
𝜕𝛼
𝜕𝐧

(𝐱⟂)ℎ + 𝒪(ℎ2),

9
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donne

̃𝛿 (𝐱⟂ + ℎ𝐧(𝐱⟂)) =
𝜕𝛿
𝜕𝐧 (𝐱⟂)
𝜕𝛼
𝜕𝐧 (𝐱⟂)

+ 𝒪(ℎ).

Par conséquent, la matrice ℍ est hermitienne, continue, et nous supposons également qu’elle
est définie positive dans la région de calcul, ce qui exige que | ̃𝛿 | < 1. Ensuite, nous observons
que nous pouvons également calculer la dérivée normale de la matrice 𝔸, qui est 𝜕

𝜕𝐧𝔸 = 0ℝ2×2

par construction. Nous dirons donc que 𝔸 est transverse. Enfin, l’équation du problème peut être
résumée comme suit :

− div⟂ (�∇⟂ 𝐵3) − 𝜔2𝐵3 = 0, (1.9)

avec � = 𝛼0ℍ + 𝑖𝔸, et

• 𝛼0 est une fonction continue, qui change de signe au travers d’une interface 𝐼, dont la dérivée
normale ne s’annule sur 𝐼,

• ℍ est une matrice hermitienne uniformément elliptique sur le domaine,

• 𝔸 est une matrice antisymétrique, transverse à l’interface, dans le sens où 𝜕𝔸
𝜕𝐧 |𝐼 = 0ℝ2×2 .

En fait, ce type d’opérateur a déjà été partiellement étudié, sans changement de signe, mais
seulement avec la dégénérescence à la frontière dans la thèse de Baouendi. On peut aussi se
référer à [4, 3].

1.5 Plan de la thèse

Ce travail est divisé en deux parties.

La première partie consiste en l’étude du modèle de plasma avec un fort champ magnétique
en arrière-plan, ce qui correspond à un métamatériau hyperbolique. L’objectif est d’étendre les
résultats de [22] au cas 3D et de dériver une condition de rayonnement. Le chapitre correspondant
introduit une décomposition des champs électriques et magnétiques ressemblant à la décomposi-
tion habituelle TE et TM, puis il donne quelques résultats sur les deux problèmes résultants. Les
résultats sont très partiels et constituent une ébauche sur le sujet.

La seconde partie consiste en l’étude de l’EDP dégénérée associée à l’équation (1.8). Le pro-
blème aux limites associé est bien posé dans un cadre variationnel «naturel». Cependant, ce
cadre n’inclut pas le comportement singulier présenté par les solutions physiques obtenues via le
principe d’absorption limite, cf. [35, 14]. Remarquez que ce comportement singulier est important
du point de vue physique puisqu’il induit le chauffage du plasma mentionné précédemment, voir
aussi [27].

Le chapitre 4 introduit le problème dans un cadre simplifié et équivalent, et nous rappelons
la formulation variationnelle utilisée dans [49] pour calculer les solutions singulières. Ensuite,
le chapitre 5 étudie une sous-classe particulière de problèmes pour laquelle nous prouvons le
principe d’absorption limite, et nous discutons de la régularité des solutions.

Le chapitre suivant 6 améliore le cadre fonctionnel de la formulation variationnelle proposée
dans [49]. Nous prouvons la cohérence de la formulation variationnelle avec le principe d’ab-
sorption limite. Puis, nous établissons des résultats d’unicité et de stabilité de la solution de la

10
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version non régularisée du problème. Un des résultats clés de ce chapitre est la définition d’une
notion faible de saut à travers l’interface à l’intérieur du domaine, qui permet de caractériser la
décomposition de la solution d’absorption limite en une partie régulière et une partie singulière.
Les résultats de ce chapitre peuvent être trouvés dans [23].

Enfin, le chapitre 7 propose deux formulations variationnelles alternatives. Nous comparons
les performances numériques des différentes formulations variationnelles introduites dans cette
deuxième partie de la thèse.

11
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CHAPTER 2

Electromagnetic waves in plasma
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2.1 Introduction on plasma

Plasma is the fourth state of the matter, and the more abundant form of matter in the universe.
It is characterized by the presence of charged particles and ions, with proportions and densities
which may vary in space and time. The temperature of a plasma is typically much higher than
the ambient temperature, often exceeding several thousand Kelvin degrees. On Earth, plasmas
are mainly used for industrial purpose. One of the most frequently cited example of industrial
use is electric energy production via fusion nuclear reactors. Actually, this motivates large facets
of academic and industrial research. Different kind of reactors are investigated nowadays, as
Tokamaks [37], or Stellarators [39, Chapter 17].

There are several challenges to achieve a stable fusion reaction inside these reactors. We
specify here three of them. The first one is the containment of the plasma inside the reactor. To
do so, several devices are arranged such that poloidal and toroidal magnetic fields and a toroidal
electric current are imposed [36], see Figure 2.1. It results in an imposed helical magnetic field.
Nevertheless, this kind of installation is not sufficient to prevent instabilities of the plasma. In
order to contain the plasma properly, measurements of the density of the plasma must be done.
Because of the extreme temperature, intrusive measurement is impossible. Then, the second
challenge consists in control the density of the plasma via reflectometry methods [43, 40, 30, 33]. It
consists in sending electromagnetic waves with different frequencies and measuring the response.
Finally, the last challenge is the plasma heating, and is done by sending electromagnetic waves at
specific frequencies and directions depending on the characteristics of the plasma. Theoretically,
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there is currently three kinds of usable waves [39, Chapter 12]: ion cyclotron frequency waves,
electron cyclotron frequency waves and lower-hybrid waves.

Figure 2.1: Representation of the magnetic fields and current inside a tokamak1.

In order to deal with these challenges, a fine description of the electromagnetic fields inside the
plasma are required. This report describes the work done on two very simplified configurations.
Both configurations considermagnetized plasmawith a constant imposedmagnetic field𝑩0 = 𝐵0𝒆𝑧.
The first configuration results in a non-standard hyperbolic partial differential equation in space.
The second configuration consists in the study of the lower-hybrid resonance, which leads to a
sign-changing degenerate PDE.

2.2 Waves in plasma

The electromagnetic fields in a plasma are described by four vector-valued functions in space-time:

• the electric field 𝑬,

• the electric displacement 𝑫,

• the magnetic field 𝑯,

• the magnetic induction or magnetizing field 𝑩.

These four fields are linked together by the well-known Maxwell’s equations:

|
|
|
|
|
|
|
|
|

𝒄𝒖𝒓𝒍 𝑯 = 𝒋 + 𝜕𝑫
𝜕𝑡

,

𝒄𝒖𝒓𝒍 𝑬 = −𝜕𝑩
𝜕𝑡

,

div𝑫 = 𝜌,

div𝑩 = 0

(2.1)

where 𝒋 is the current density vector and 𝜌 is the charge density. Additionally, it is completed by
the two constitutive relations that holds at the microscopic scale:

𝑫 = 𝜀0𝑬, 𝑩 = 𝜇0𝑯,
1Source: https://www.iter.org/newsline/-/3037
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where 𝜀0 is the vacuum permittivity and 𝜇0 is the vacuum permeability. On the other hand,
the considered medium is a plasma, which is characterized by the presence of free electrically
charged particles, such as electrons or ions. Consequently, a current density 𝒋 is induced by the
displacement of the charges inside the plasma. The presence of plasma current density makes a
major difference with the classic medium because the plasma is made of free charges and these
charges obviously move. More precisely, we consider a cold magnetized collisionless plasma.

The plasma can be described by two approach which are not equivalent: the fluid approach
with the density of the particles and electrons and the kinetic approach with the distribution
function on the particles. Because our plasma is considered cold, the fluid approach is relevant.
The kinetic approach relies on the Boltzmann theory and will not be our subject of interest. The
interested reader may refer to [55, Chapter 8, 56, Chapter 4].

Therefore, given the set of different ion species and electrons 𝑆, we can decompose the plasma
current as

𝒋 = ∑
𝑠∈𝑆

𝒋𝑠 = ∑
𝑠∈𝑆

𝒩𝑠𝑞𝑠𝒗𝑠

where, given an ion species 𝑠 ∈ 𝑆, 𝒩𝑠 is the ion density, i.e., the number of ions per volume unit, 𝑞𝑠
is the ion charge and 𝒗𝑠 is the velocity. The velocity and the electromagnetic fields are linked via
the Navier-Stokes equation and the volume Lorentz force:

𝒩𝑠𝑚𝑠 (
𝜕𝒗𝑠
𝜕𝑡

+ (𝒗𝑠 ⋅ ∇) 𝒗𝑠) = 𝒩𝑠𝑞𝑠 (𝑬 + 𝒗𝑠 × 𝑩) − div �,

where � is the fluid constraint tensor.

From this point, several simplification assumptions are made. Let (𝒆1, 𝒆2, 𝒆3) be an orthonormal
basis of ℝ3, with (𝑥1, 𝑥2, 𝑥3) the normalized orthogonal coordinates. Since the plasma is cold and
collisionless, we neglect the fluid constraint tensor �. Next, we linearize the equation around the
equilibrium (𝒗𝑠, 𝑬, 𝑩) = (0, 0, 𝑩0) where 𝑩0 = 𝐵0𝒆3 is the background magnetic field imposed to
the plasma. Therefore, expanding 𝒗𝑠, 𝑬, 𝑩 at the first order and substituting these quantities into
the Navier-Stokes equation yields

𝜕𝒗𝑠
𝜕𝑡

=
𝑞𝑠
𝑚𝑠

(𝑬 + 𝒗𝑠 × 𝑩0) .

Finally, we assume that we are in time-harmonic regime, i.e., all the quantities 𝑎(𝒙, 𝑡)which depend
on time can be expanded as 𝑎(𝒙, 𝑡) = Re (𝑎̂(𝒙)𝑒−𝑖𝜔𝑡). Then, the equations above becomes

−𝑖𝜔 ̂𝒗𝑠 =
𝑞𝑠
𝑚𝑠

( ̂𝑬 + ̂𝒗𝑠 × (𝐵0𝒆3)) .

The eigenvectors of the operator 𝒆3 × ⋅ are (𝒆+, 𝒆−, 𝒆3) with 𝒆± = 1
√2

(𝒆1 ∓ 𝑖𝒆2), and they constitute

an orthonormal basis of the complex vector space ℂ3. In this basis, we have

̂𝑣𝑠,± = (
𝑞𝑠
𝑚𝑠

) 𝑖
𝜔 ∓ 𝜔𝑐

𝐸̂±, ̂𝑣𝑠,𝑧 = (
𝑞𝑠
𝑚𝑠

) 𝑖
𝜔
𝐸̂𝑧,

with 𝜔𝑐,𝑠 =
𝑞𝑠𝐵0
𝑚𝑠

, the cyclotron frequency associated with the ion species 𝑠. Notice that ̂𝑣𝑠,± =
1
√2

( ̂𝑣𝑠,𝑥 ± 𝑖 ̂𝑣𝑠,𝑦) and 𝐸̂± = 1
√2

(𝐸̂𝑥 ± 𝑖𝐸̂𝑦). Then, the current density ̂𝒋 can be expressed in function
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of the electric field ̂𝑬 in the basis (𝒆1, 𝒆2, 𝒆3):

̂𝒋𝑠 = 𝒩𝑠𝑞𝑠 ̂𝒗𝑠 = �𝑠 ̂𝑬, with �𝑠 = 𝑖𝜔𝜀0�𝑠 and �𝑠 =

⎛
⎜
⎜
⎜
⎝

−
𝜔2
𝑝,𝑠

𝜔2−𝜔2
𝑐,𝑠

−𝑖
𝜔𝑐,𝑠𝜔2

𝑝,𝑠

𝜔(𝜔2−𝜔2
𝑐,𝑠)

0

𝑖
𝜔𝑐,𝑠𝜔2

𝑝,𝑠

𝜔(𝜔2−𝜔2
𝑐,𝑠)

−
𝜔2
𝑝,𝑠

𝜔2−𝜔2
𝑐,𝑠

0

0 0
𝜔2
𝑝,𝑠

𝜔2

⎞
⎟
⎟
⎟
⎠

,

where we assumed that the ion densities 𝒩𝑠 do not vary in time. The matrices �𝑠 and �𝑠 are
respectively called conductivity tensor and electric susceptibility tensor. Notice the introduction

of the plasma frequency 𝜔𝑝,𝑠 = √
𝒩𝑠𝑞2𝑠
𝑚𝑠𝜀0

.

Remark 2.2.1. The approach can be generalized to any background magnetic field 𝑩0(𝒙). Actually,
given a point 𝒙 ∈ ℝ3, the electric susceptibility tensor �𝑠(𝒙) is always diagonal when it is expressed
into the basis constituted by the eigenvectors of the operator 𝑩0(𝒙) × ⋅. One can refer to [31,
Chapter 2].

Finally, going back to the Maxwell’s equations expressed in time-harmonic regime leads to

|
𝒄𝒖𝒓𝒍 𝑩̂ = −𝑖𝜔

𝑐2
� ̂𝑬,

𝒄𝒖𝒓𝒍 ̂𝑬 = 𝑖𝜔𝑩̂,
(2.2)

where 𝑐 = (𝜇0𝜀0)
−1/2, and the well-known cold plasma dielectric tensor is given by

� = 𝕀3 +∑
𝑠∈𝑆

�𝑠 =
⎛
⎜
⎜
⎝

𝛼 −𝑖𝛿 0

𝑖𝛿 𝛼 0

0 0 𝛽

⎞
⎟
⎟
⎠

,

𝛼 = 1 −∑
𝑠∈𝑆

𝜔2
𝑝,𝑠

𝜔2 − 𝜔2
𝑐,𝑠
, 𝛿 = 1

𝜔
∑
𝑠∈𝑆

𝜔𝑐,𝑠𝜔2
𝑝,𝑠

𝜔2 − 𝜔2
𝑐,𝑠
, 𝛽 = 1 −

∑𝑠∈𝑆 𝜔2
𝑝,𝑠

𝜔2 ,

𝜔𝑐,𝑠 =
𝑞𝑠𝐵0
𝑚𝑠

, 𝜔2
𝑝,𝑠 =

𝒩𝑠𝑞2𝑠
𝑚𝑠𝜀0

.

(2.3)

Let us make few comments about the model above. Firstly, the cold plasma dielectric tensor
varies within the space variable 𝒙 and the frequency of the harmonic regime 𝜔. Indeed, the plasma
frequencies 𝜔𝑝,𝑠 depend on the ion densities𝒩𝑠

2, and the dependence on the frequency 𝜔 indicates
that the model is clearly dispersive. Secondly, � is not necessarily positive for any frequency at
any point of the space from the physics. This observation is the basis of this thesis and will be
discussed in the two following paragraph. On the other hand, the case � uniformly positive or
uniformly negative corresponds to the classical Maxwell’s equations which have already been
studied from the mathematical point of view since the establishment of these equations.

The model above has been extensively studied in the Physics community, and we refer to the
following monographs [55, 56, 39].

2Notice that 𝜔𝑝,𝑠 does not depend on the frequency 𝜔 because 𝒩𝑠 does not depend on time.
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2.3 Plasma in a strong background magnetic field

As noticed the last paragraph, the dielectric tensor � is not necessarily positive. If we consider

global plasma frequency 𝜔2
𝑝 = ∑𝑠∈𝑆 𝜔2

𝑝,𝑠, then we have 𝛽 = 1 −
𝜔2
𝑝

𝜔2 negative whenever 0 < 𝜔 < 𝜔𝑝.
On the other hand, we can clearly find frequencies 𝜔𝑝,𝑠 and 𝜔𝑐,𝑠 in such way that the 2 × 2 bloc

(
𝛼 −𝑖𝛿

𝑖𝛿 𝛼
)

is positive definite, which is equivalent to 𝛼 > |𝛿|. In order to simplify the analysis, we will assume
that the background magnetic field 𝑩0 has a very large magnitude, in such way that the cyclotron
frequencies 𝜔𝑐,𝑠 are very large compared to the global plasma frequency 𝜔𝑝. Then, in the view of
the expressions (2.3) of 𝛼 and 𝛿, the dielectric tensor can be approximated for a given frequency
𝜔 > 0 as

� =
⎛
⎜
⎜
⎜
⎝

1 0 0

0 1 0

0 0 1 −
𝜔2
𝑝

𝜔2

⎞
⎟
⎟
⎟
⎠

. (2.4)

We assume in the following that this approximation, which we denote strong magnetic field limit,
is valid in the whole free space, and that 𝜔𝑝 does not vary in the whole space ℝ3. Then, the
objective of the first part of this thesis is to study the problem posed in free space:

|
|
|
|
|
|

find ̂𝑬, 𝑩 such that

𝒄𝒖𝒓𝒍 𝑩 + 𝑖𝜔
𝑐2

� ̂𝑬 = ̂𝒋,

𝒄𝒖𝒓𝒍 ̂𝑬 − 𝑖𝜔𝑩 = 𝒎̂,

(2.5)

where some source terms ̂𝒋, 𝒎̂ have been added.
Whereas numerous works are devoted to isotropic models, i.e., models where both the dielec-

tric permittivity and the magnetic permeability are scalars [10, 47, 11, 15, 16, 44, 8], few works are
dedicated to anisotropic media, especially if the dielectric permittivity or magnetic permeability
tensor is no longer sign-definite. Let us remark that there exist works dedicated to the study of
Maxwell’s equations with anisotropic elliptic dielectric permittivity and magnetic permeability
tensors [19, 21, 20], which is unfortunately not our case. We study so-called hyperbolic metama-
terials, see [53] and references therein. As far as we know, few mathematical analyses [12, 22]
are devoted to the study of hyperbolic metamaterials. Notice that hyperbolic problems in the
frequency domain may appear in fluid dynamics, see [28, 29]. Moreover, hyperbolic problems in
bounded domains were first studied up to our knowledge in [38].

Our model has already been studied in the case of 2D-electromagnetic fields, i.e., the magnetic
field and the electric fields does not depend on the 𝑦-variable in [22] in the harmonic regime, see
[7, 6] for its time domain counterpart.

Remark 2.3.1. The system without source term can be rewritten in the time domain as:

𝒄𝒖𝒓𝒍 𝑩 − 1
𝑐2
𝜕𝑡𝑬 = 𝜇0𝑱𝑝,

𝒄𝒖𝒓𝒍 𝑬 + 𝜕𝑡𝑩 = 0.

where 𝜕𝑡𝑱𝑝 = 𝜔2
𝑝𝜀0(𝑬 ⋅ 𝒆3)𝒆3.
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2.4 Plasma with a varying density

2.4.1 Single species plasma

When an electromagnetic wave is sent inside a plasma, it can transfer energy to the particles
to produce plasma heating in a localized region. This phenomenon is related to the so-called
resonant waves, and appears with the variation in space of the ion densities 𝒩𝑠(𝒙). For simplicity,
we assume that the plasma is constituted by only one ion species of density 𝒩𝑒(𝒙). Therefore, the
dielectric tensor

�(𝒙) =
⎛
⎜
⎜
⎝

𝛼(𝒙) −𝑖𝛿(𝒙) 0

𝑖𝛿(𝒙) 𝛼(𝒙) 0

0 0 𝛽(𝒙)

⎞
⎟
⎟
⎠

,

also varies in space, where 𝛼, 𝛿, 𝛽 are given by (2.3), which can be written in our case

𝛼 = 1 −
𝜔2
𝑝

𝜔2 − 𝜔2
𝑐
, 𝛿 = 1

𝜔
𝜔𝑐𝜔2

𝑝

𝜔2 − 𝜔2
𝑐
, 𝛽 = 1 −

𝜔2
𝑝

𝜔2 ,

𝜔𝑐 =
𝑞𝑒𝐵0
𝑚𝑐

, 𝜔2
𝑝 =

𝑞2𝑒
𝑚𝑒𝜀0

𝒩𝑒.

We assume that the plasma density 𝒩𝑒 varies in space so that we have

𝛼(𝒙) = 1 − 𝐶𝛼,𝜔𝒩𝑒(𝒙), 𝛿(𝒙)= 𝐶𝛿,𝜔𝒩𝑒(𝒙), 𝛽(𝒙) = 1 − 𝐶𝛽,𝜔𝒩𝑒(𝒙). (2.6)

We consider a lower hybrid resonance in the plasma, see [55, Chapter 2-6] and recent works [35,
26, 13, 14, 27, 25, 48, 50, 49], which is characterized by the fact that 𝛼 = 0 on some curve inside
the region. Like in the above cited works, we will be particularly interested in the cases when
the density 𝒩𝑒(𝒙) is s.t. the sign of 𝛼 changes continuously between subregions separated by an
interface.

With obvious notations, 𝑬 = 𝐸1𝒆1 + 𝐸2𝒆2 + 𝐸3𝒆3, etc. We will assume in this part that all
quantities are independent of 𝑥3, the variable corresponding to the direction of the exterior
magnetic field, so that 𝐸1 = 𝐸1(𝑥1, 𝑥2), etc. Then, expanding the first equation of (2.2), one have

⎛
⎜
⎜
⎝

𝜕2𝐵3
−𝜕1𝐵3

𝜕1𝐵2 − 𝜕2𝐵1

⎞
⎟
⎟
⎠

= −𝑖𝜔
𝑐2

⎛
⎜
⎜
⎝

𝛼𝐸1 − 𝑖𝛿𝐸2
𝑖𝛿𝐸1 + 𝛼𝐸2

𝛽𝐸3

⎞
⎟
⎟
⎠

.

Observe that 𝐸1, 𝐸2, 𝐵3 and 𝐸3, 𝐵1, 𝐵2 are independent in the equation above. This observation
is also valid for the second equation of (2.2). Hence, thanks to the block diagonal structure
of �, the Maxwell system (2.2) can be split into two independent systems that dissociate 𝐸3,
𝐁⟂ = 𝐵1𝐞1 +𝐵2𝐞2 on one hand, and 𝐄⟂ = 𝐸1𝐞1 +𝐸2𝐞2, 𝐵3 on the other. In the view of the previous
equation we define the two following differential operator

𝐜𝐮𝐫𝐥⟂ 𝑓 = (
𝜕2𝑓

−𝜕1𝑓
) , curl⟂ (𝑓1𝐞1 + 𝑓2𝐞2) = 𝜕1𝑓2 − 𝜕2𝑓1.
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2.4. Plasma with a varying density

Then, the system for the Ordinary mode is:

{
𝐜𝐮𝐫𝐥⟂ 𝐸3 = 𝑖𝜔𝐁⟂,

curl⟂ 𝐁⟂ = −
𝑖𝜔𝛽
𝑐2

𝐸3,
(O-mode)

and the eXtraodinary mode:

{
curl⟂ 𝐄⟂ = 𝑖𝜔𝐵3,

𝐜𝐮𝐫𝐥⟂ 𝐵3 = −𝑖𝜔
𝑐2

�⟂𝐄⟂,
where �⟂ = (

𝛼 −𝑖𝛿

𝑖𝛿 𝛼
) . (X-mode)

For the discussion that follows, we will need to introduce auxiliary notation. Let 𝐱⟂ =
𝑥1𝐞1 + 𝑥2𝐞2, ∆⟂ 𝑣 = 𝜕11𝑣 + 𝜕22𝑣, div⟂ 𝐯 = 𝜕1𝑣1 + 𝜕2𝑣2 and ∇⟂ 𝑣 = 𝜕1𝑣 𝐞1 + 𝜕2𝑣 𝐞2. In this case we
evidently have that 𝐜𝐮𝐫𝐥⟂ 𝑣 = −𝑅𝜋/2 ∇⟂ 𝑣 and curl⟂ 𝐯 = − div⟂ 𝑅𝜋/2𝐯, where 𝑅𝜋/2 = ( 0 −1

1 0 ) is the
𝜋/2 rotation matrix in the oriented plane (𝐞1, 𝐞2). In particular, curl⟂ 𝐜𝐮𝐫𝐥⟂ 𝑣 = −∆⟂ 𝑣.

Let us now focus on the equations governing the scalar unknowns 𝐸3 and 𝐵3. The second-

order PDE derived from the system for the Ordinary mode is −∆⟂ 𝐸3 =
𝜔2𝛽
𝑐2 𝐸3. In the case when

the sign of 𝛽 changes continuously, this equation is reminiscent of an Airy equation, cf. [35].
On the other hand, the second-order PDE derived from the (X-mode) is

div⟂ (𝑅𝜋/2�−1⟂ 𝑅𝜋/2 ∇⟂ 𝐵3) =
𝜔2

𝑐2
𝐵3.

We will assume that the tensor �⟂ is invertible everywhere in the region, more precisely, that
𝛼2(𝐱⟂) − 𝛿2(𝐱⟂) ≠ 0 for all 𝐱⟂, and thus the above expression is well-defined. Let us define the
two-by-two tensor

� ≔ 𝑐2𝑅𝜋/2�−1⟂ 𝑅𝜋/2 =
𝑐2

𝛿2 − 𝛼2
(
𝛼 𝑖𝛿

−𝑖𝛿 𝛼
) .

Then, since it holds that 𝛼 and 𝛿 depend on the space variable 𝐱⟂ only via the density of the
plasma 𝒩𝑒(𝐱⟂), 𝛼 and 𝛿 have the same level curves. Moreover, with (2.6) in mind, 𝛼 = 1 − 𝛿/𝛿+

where 𝛿+ = 𝐶𝛿,𝜔/𝐶𝛼,𝜔.
As discussed before, we assume that the coefficient 𝛼(𝐱⟂) vanishes on some interface 𝐼. In

view of the last remark, the tensor �(𝐱⟂) is constant on 𝐼, and is equal to � = 𝑖𝔸, with

𝔸 = 𝑐2

𝛿+2
(
0 −𝛿+

𝛿+ 0
) ,

which is a real-valued skew-symmetric matrix. From this it follows that we can decompose �(𝐱⟂)
as

�(𝒙⟂) = − 𝛼0(𝐱⟂)ℍ(𝐱⟂)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�0(𝐱⟂)

+𝑖𝔸, (2.7)

where 𝛼0 =
𝑐2𝛼

𝛼2−𝛿2 , and ℍ(𝐱⟂) is a Hermitian matrix given by

ℍ(𝐱⟂) = (
1 −𝑖 (𝛿(𝐱⟂) + 𝛼(𝐱⟂)/𝛿+)

𝑖 (𝛿(𝐱⟂) + 𝛼(𝐱⟂)/𝛿+) 1
) .
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Chapter 2. Electromagnetic waves in plasma

In what follows, we will assume thatℍ(𝐱⟂) is positive definite in the whole computational region.
This requires in particular that the determinant of ℍ(𝐱⟂) is positive for all 𝐱⟂, which leads to

|𝛿(𝐱⟂) + 𝛼(𝐱⟂)/𝛿+| < 1.

Since 𝔸 is skew-symmetric, div⟂(𝔸∇⟂ 𝐵3) = 0, so the second-order PDE governing 𝐵3 becomes

− div⟂ (�0 ∇⟂ 𝐵3) − 𝜔2𝐵3 = 0. (2.8)

We suppose that the electron density 𝒩𝑒 is 𝒞 2-regular, so that 𝛼0 and ℍ are also 𝒞 2-regular.
Given 𝐱⟂ on the interface 𝐼, let 𝐧(𝐱⟂) be the normal to the interface at the point 𝐱⟂. Then, for ℎ a
real small enough, we can write the series expansion of 𝛼0:

𝛼0(𝐱⟂ + ℎ𝐧(𝐱⟂)) =
𝜕𝛼0
𝜕𝐧

(𝐱⟂)ℎ +
𝜕2𝛼0
𝜕𝐧2

(𝐱⟂)ℎ2 + 𝒪(ℎ3).

Therefore, we assume from now on that |𝛼0(𝐱⟂)| behaves in a neighborhood of the interface
𝐼 = {𝛼0(𝐱⟂) = 0} like dist(𝐱⟂, 𝐼 ) and does not degenerate in the sense that there is a constant 𝑐 > 0
such that | 𝜕𝛼0𝜕𝐧 (𝐱⟂)| > 𝑐 for all 𝐱⟂ ∈ 𝐼. We also assume that the interface 𝐼 is a 𝐶1-loop (without
self-intersections).

Since we are interested in the behavior of the physical solution in a neighborhood of the
interface, we do not consider the problem in the whole space ℝ3, but rather inside a bounded
domain 𝐷 which contains the interface. Then, several boundary conditions exist on 𝜕𝐷: Dirichlet
conditions, Neumann conditions, Robin conditions, and absorbing conditions. By simplicity, we
will mostly use absorbing conditions

�0∇⟂𝐵3 ⋅ 𝐧 + 𝑖𝜆𝐵3 = 𝑓 , on 𝜕𝐷,

where 𝑓 represents some source term. Notice that absorbing conditions may be used to model
emitting or receiving antennas.

Considering the model derived from the eXtraodinary mode with unknown 𝐵3 in the neigh-
borhood of the interface leads to a degenerate elliptic PDE. The Mathematics community studies
the models derived from the framework of the waves in the cold plasma from a decade [25, 2, 26,
7, 42]. How to solve this equation will be the goal of the second part of this thesis. This problem
has already been investigated in [49], where a numerical method based on a mixed variational
formulation was proposed.

Remark 2.4.1. Notice that other assumptions could be made on the behavior of 𝛼0: dist(𝐱⟂, 𝐼 )2,
dist(𝐱⟂, 𝐼 )3, or even a fractional power. It would mean that 𝜕𝛼0

𝜕𝐧 (𝐱⟂) vanishes for all 𝐱⟂ on the
interface In particular, this would lead to a different type of singularity than the one studied in
this thesis. Moreover, it does not seem relevant from the physical point of view since the density
of the plasma is smooth in practice, and we clearly exclude the presence of shock.

2.4.2 General plasma

The problem described below has not been studied in this thesis. Nevertheless, we think that it is
interesting to formalize it because it appears that such problems may be connected to some existing
literature, opening new perspectives.
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2.4. Plasma with a varying density

The argument developed for single species plasma cannot be applied without adaptation for
a real plasma, which as in general 2 species at least (the electrons and the ions). In that case,
using (2.3), we have

𝛼(𝒙) = 1 −∑
𝑠∈𝑆

𝐶𝑠,𝛼,𝜔𝒩𝑠(𝒙), 𝛿(𝒙) = ∑
𝑠∈𝑆

𝐶𝑠,𝛿 ,𝜔𝒩𝑠(𝒙),

with 𝐶𝑠,𝛼,𝜔 > 0 and 𝐶𝑠,𝛿 ,𝜔 ∈ ℝ for all species 𝑠 ∈ 𝑆. Notice that 𝐶𝑠,𝛿 ,𝜔 > 0 (respectively 𝐶𝑠,𝛿 ,𝜔 < 0)
for positively (resp. negatively) charged species, as indicated by equations (2.3).

As before, we assume that the problem is independent of 𝑥3, so that the problem can be
separated into ordinary and extraordinary modes, and the sign of 𝛼 changes through an interface 𝐼.
We assume that the densities of the ion species are at least 𝒞 2-regular, and the same assumption
applies to 𝛿 and 𝛼. Moreover, |𝛼(𝐱⟂)| behaves in a neighborhood of the interface 𝐼 = {𝛼(𝐱⟂) = 0}
like dist(𝐱⟂, 𝐼 ) and does not degenerate in the sense that there is a constant 𝑐 > 0 such that
| 𝜕𝛼𝜕𝐧 (𝐱⟂)| > 𝑐 for all 𝐱⟂ ∈ 𝐼.

If we replicate the previous analysis, the bottleneck arises from the fact that 𝛼(𝐱⟂) and 𝛿(𝐱⟂)
do not share the same level curves. Therefore, the matrix �(𝐱⟂) is no longer constant on the
interface 𝐼, and we cannot define a constant matrix 𝔸 such that the decomposition (2.7) holds.

Nonetheless, we can still formalize the problem in the following way. The value of � on the
interface is �(𝐱⟂) = 𝑖𝔸(𝐱⟂) with

𝔸(𝐱⟂) =
𝑐2

𝛿(𝐱⟂)
2 (

0 −𝛿(𝐱⟂)

𝛿(𝐱⟂) 0
) , with 𝐱⟂ ∈ 𝐼.

It is possible to extend the definition of this matrix to the whole domain. For all 𝐱⟂ in the
domain, there is 𝒫 (𝐱⟂) ∈ 𝐼, the projection of 𝐱⟂ on the interface 𝐼, and 𝑠(𝐱⟂) ∈ ℝ such that
𝐱⟂ = 𝒫 (𝐱⟂) + 𝑠(𝐱⟂)𝐧(𝒫 (𝐱⟂)), where 𝐧(𝐲⟂) is the unit normal vector to the interface at the point
𝐲⟂ ∈ 𝐼. We can reasonably assume that the last decomposition is unique in the domain of interest.
Therefore, we easily extend 𝔸 in the whole domain as

𝔸(𝐱⟂) =
𝑐2

𝛿(𝒫 (𝐱⟂))
2 (

0 −𝛿(𝒫 (𝐱⟂))

𝛿(𝒫 (𝐱⟂)) 0
) .

Then, we factorize the matrix � = −𝛼0ℍ + 𝑖𝔸 as before, with 𝛼0 =
𝑐2𝛼

𝛼2−𝛿2 and

ℍ(𝐱⟂) = (
1 𝑖 ̃𝛿(𝐱⟂)

−𝑖 ̃𝛿(𝐱⟂) 1
) , ̃𝛿(𝐱⟂) =

𝛿(𝐱⟂) (𝛿(𝒫 (𝐱⟂)) − 𝛿(𝐱⟂)) + 𝛼(𝐱⟂)2

𝛿(𝒫 (𝐱⟂))𝛼(𝐱⟂)
.

Due to the regularity assumption, ̃𝛿 does not degenerate in the neighborhood the interface. Indeed,
expanding 𝛼 and 𝛿 for small ℎ ∈ ℝ and 𝐱⟂ ∈ 𝐼, that is,

𝛿(𝐱⟂ + ℎ𝐧(𝐱⟂)) = 𝛿(𝐱⟂) +
𝜕𝛿
𝜕𝐧

(𝐱⟂)ℎ + 𝒪(ℎ2),

𝛼(𝐱⟂ + ℎ𝐧(𝐱⟂)) =
𝜕𝛼
𝜕𝐧

(𝐱⟂)ℎ + 𝒪(ℎ2),

yields

̃𝛿 (𝐱⟂ + ℎ𝐧(𝐱⟂)) =
𝜕𝛿
𝜕𝐧 (𝐱⟂)
𝜕𝛼
𝜕𝐧 (𝐱⟂)

+ 𝒪(ℎ).
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Chapter 2. Electromagnetic waves in plasma

Therefore, the matrix ℍ is Hermitian, continuous, and we also assume that it is positive
definite in the computational region, which requires that | ̃𝛿 | < 1. Next, observe that we can also
compute the normal derivative of the matrix 𝔸, which is 𝜕

𝜕𝐧𝔸 = 0ℝ2×2 by construction. Therefore,
we will say that 𝔸 is transverse. Finally, the equation of the problem can be summarized as

− div⟂ (�∇⟂ 𝐵3) − 𝜔2𝐵3 = 0, (2.9)

with � = 𝛼0ℍ + 𝑖𝔸, where

• 𝛼0 is a continuous sign-changing function, whose normal derivative does not vanish on the
locus of the sign-change,

• ℍ is a hermitian matrix uniformly elliptic on the domain,

• 𝔸 is a skew-symmetric matrix, transverse to the interface, in the sense that 𝜕𝔸
𝜕𝐧 |𝐼 = 0ℝ2×2 .

Actually, this type of operator have already been partially studied, without the sign change but
only with the degeneracy at the boundary in the thesis of Baouendi [5]. One may refer also to [4,
3].

2.5 Outline

This work is divided in two parts.

The first part consists in the study of the model of plasma in a strong background magnetic
field, which corresponds to a hyperbolic metamaterial. The objective is to extend the results of
[22] to the 3D-case and to derive a radiation condition. The corresponding chapter introduces a
splitting of the electric and magnetic fields resembling the usual TE and TM decomposition, then,
it gives some results on the two resulting problems. The results are in a very partial state, and
constitute a rough draft on the subject.

The second part consists in the study of the degenerate PDE associated to the equation (2.8)
augmented by absorbing boundary conditions. The associated boundary-value problem is well-
posed within a “natural” variational framework. However, this framework does not include
the singular behavior presented by the physical solutions obtained via the limiting absorption
principle, cf. [35, 14]. Notice that this singular behavior is important from the physical point of
view since it induces the plasma heating mentioned before, see also [27].

Chapter 4 introduces the problem in a simplified and equivalent setting, and we recall the
variational formulation used in [49] to compute the singular solutions. Then, Chapter 5 studies
a particular subclass of problem for which we prove the limiting absorption principle, and we
discuss the regularity of the solutions.

Next, Chapter 6 improves the functional framework of the variational formulation proposed
in [49]. We prove the consistency of the variational formulation with the limiting absorption
principle. Then, we establish uniqueness, and stability results of the solution of the non-regularized
version of the problem. One of the key results of this chapter is the definition of a notion of weak
jump through the interface inside the domain, which allows to characterize the decomposition of
the limiting absorption solution into a regular and a singular parts. The results of this Chapter
can be found in [23].
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Finally, Chapter 7 proposes two alternative variational formulations. We compare numerical
performance of the different variational formulations introduced in this second part of the thesis.

23



Chapter 2. Electromagnetic waves in plasma

24



PART I

Hyperbolic problem in free space





CHAPTER 3

Hyperbolic Maxwell problem in free space
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Given an exterior magnetic field 𝑩0 = 𝐵0𝒆𝑧 with 𝐵0 → +∞, the harmonic Maxwell’s equations
in a cold plasma are

|
𝒄𝒖𝒓𝒍 𝑩 + 𝑖𝜔

𝑐2
�𝑬 = 0,

𝒄𝒖𝒓𝒍 𝑬 − 𝑖𝜔𝑩 = 0,

where 𝑬, 𝑩 are perturbations of the electromagnetic fields at equilibrium, and the dielectric tensor
� becomes a symmetric dielectric tensor given by

� =
⎛
⎜
⎜
⎝

1 0 0

0 1 0

0 0 𝛽(𝜔)

⎞
⎟
⎟
⎠

, with 𝛽(𝜔) = 1 −
𝜔2
𝑝

𝜔2 . (3.1)
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We immediately notice that � is not necessarily a sign-definite matrix (i.e., a matrix with non-

vanishing eigenvalues of the same sign) because 1 −
𝜔2
𝑝

𝜔2 < 0 for 0 < 𝜔 < 𝜔𝑝. Moreover, � is not
elliptic, even for non-standard definition of elliptic tensor [19].

Finally, up to a renormalization1 of 𝜔, 𝜔𝑝, 𝑬 and 𝑩, we assume that the speed of light is 𝑐 = 1.
Introducing source terms 𝒋,𝒎, we rewrite the problem to solve as

|
|
|
|
|
|

find 𝑬, 𝑩 such that

𝒄𝒖𝒓𝒍 𝑩 + 𝑖𝜔�𝑬 = 𝒋,

𝒄𝒖𝒓𝒍 𝑬 − 𝑖𝜔𝑩 = 𝒎.

(3.2)

This problem has already been investigated in [22]. With the assumption of 2D-fields, the
transverse electric and the transverse magnetic are decoupled. Then, it has been showed in [22]
that the transverse magnetic problem solves a hyperbolic equation in free space, whereas the
transverse electric problem solves an elliptic equation problem. The goal of this chapter is to
extend the results to the case of 3D-fields and to provides insights into a Silver-Müller condition,
which is the equivalent of the radiation condition for Maxwell’s equation.

The first difficulty is the splitting of the problem into two sub-problems, each of which captures
either the elliptic or hyperbolic behavior of the problem. This is the subject of the first section,
which will supply sub-problems : the transverse electric problem and the transverse magnetic
problem. These problems share analogous properties with the classic ones. Then, the second
and third sections are devoted to the transverse electric and magnetic problems. The transverse
magnetic problem will have an important step in the resolution of a 3D hyperbolic scalar problem
in free space.

3.1 Problem splitting

3.1.1 Problem with absorption

We begin the study of the system with a simple case to solve: this is the case where 𝜔 ∈ ℂ ⧵ ℝ, so
that 𝜔2 ∉ ℝ+.

We suppose that 𝒋,𝒎, 𝑬, 𝑩 are in 𝑳2 (ℝ3) ≔ (𝐿2 (ℝ3))3. Subsequently, this requires that 𝒄𝒖𝒓𝒍 𝑬
and 𝒄𝒖𝒓𝒍 𝑩 belong also to 𝑳2 (ℝ3). Thus, it is natural to first look for solutions in

𝑯(𝒄𝒖𝒓𝒍; ℝ3) ≔ {𝑭 ∈ 𝑳2 (ℝ3) ; 𝒄𝒖𝒓𝒍 𝑭 ∈ 𝑳2 (ℝ3)} .

Thus, the inhomogeneous problem is written as:

|
|
|
|
|
|

find (𝑬, 𝑩) ∈ (𝑯 (𝒄𝒖𝒓𝒍; ℝ3))2 such that

𝒄𝒖𝒓𝒍 𝑩 + 𝑖𝜔�𝑬 = 𝒋,

𝒄𝒖𝒓𝒍 𝑬 − 𝑖𝜔𝑩 = 𝒎,

(3.3)

with � given by (3.1) and 𝒋,𝒎 ∈ 𝑳2 (ℝ3). We can eliminate 𝑩 from the above and rewrite the
problem as a second order system:

|
find 𝑬 ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) such that

𝒄𝒖𝒓𝒍 𝒄𝒖𝒓𝒍 𝑬 − 𝜔2�𝑬 = 𝑭,
(3.4)

1The renormalization is 𝜔
𝑐
= 𝜔̃, 𝜔𝑝

𝑐
= 𝜔̃𝑝 and 𝑐𝑩 = 𝑩̃.
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where 𝑭 = 𝒄𝒖𝒓𝒍𝒎 + 𝑖𝜔𝒋 ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3)′.

Remark 3.1.1. Given 𝒎 ∈ 𝑳2 (ℝ3), 𝒄𝒖𝒓𝒍𝒎 is well-defined in the sense of the distributions 𝒟 ′ (ℝ3)
and can easily be extended by continuity in 𝑯(𝒄𝒖𝒓𝒍; ℝ3)′:

⟨𝒄𝒖𝒓𝒍𝒎, 𝒈⟩𝑯(𝒄𝒖𝒓𝒍;ℝ3)′,𝑯(𝒄𝒖𝒓𝒍;ℝ3) = ∫
ℝ3

𝒎 ⋅ 𝒄𝒖𝒓𝒍 𝒈 d𝒙.

Notice that the duality bracket is linear with respect to the first variable and antilinear with
respect to the second one.

Consider the following sesquilinear form, associated with the equation (3.4), defined on
𝑯(𝒄𝒖𝒓𝒍; ℝ3) × 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) by:

𝑎𝑬(𝒇 , 𝒈) ≔ ∫
ℝ3

(𝒄𝒖𝒓𝒍 𝒇 ⋅ 𝒄𝒖𝒓𝒍 𝒈 − 𝜔2𝒇 ⋅ 𝒈 + 𝜔2
𝑝𝑓𝑧𝑔𝑧) d𝒙.

The index 𝑬 stands for electric. Then, the variational form of the (3.4) problem is:

|
find 𝑬 ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) such that

𝑎𝑬(𝑬, 𝒈) = ⟨𝑭 , 𝒈⟩𝑯(𝒄𝒖𝒓𝒍;ℝ3) , ∀𝒈 ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) .
(3.5)

with 𝑭 ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3)′. The following lemma shows the equivalence between the problems (3.3)
and (3.5).

Lemma 3.1.2. 𝑬 is a solution of (3.5) with 𝑭 = 𝒄𝒖𝒓𝒍𝒎 + 𝑖𝜔𝒋, if and only if (𝑬, 𝑩) ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3)2

is solution of (3.3).

Proof. Let (𝑬, 𝑩) be solutions of (3.3). Then, 𝑬 solves (3.4) in 𝑯(𝒄𝒖𝒓𝒍; ℝ3)′. Testing the equation
against 𝒈 ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) and integrating by parts gives the result.

On the other hand, given 𝑬 ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) be a solution of (3.5), 𝑩 = 1
𝑖𝜔 (𝒄𝒖𝒓𝒍 𝑬 − 𝒎) ∈ 𝑳2 (ℝ3).

Then, (𝑬, 𝑩) solves (3.3) in (𝒟 ′ (ℝ3))3. Finally, because 𝑳2 (ℝ3) ↪ (𝒟 ′ (ℝ3))3, the equalities
hold in 𝑳2 (ℝ3) and 𝑩 ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3).

Lemma 3.1.3. If 𝜔 ∈ ℂ ⧵ ℝ, then the problem (3.5) admits a unique solution and there exists 𝐶 > 0
depending on 𝜔 such that

‖𝑬‖𝑯(𝒄𝒖𝒓𝒍;ℝ3) ≤ 𝐶𝜔 ‖𝑭‖𝑯(𝒄𝒖𝒓𝒍;ℝ3)′ .

Proof. The proof is based on the Lax-Milgram theorem. In fact, 𝑭 is by definition a continuous anti-
linear form on 𝑯(𝒄𝒖𝒓𝒍; ℝ3) and 𝑎𝑬 is a continuous sesquilinear form on 𝑯(𝒄𝒖𝒓𝒍; ℝ3) ×𝑯 (𝒄𝒖𝒓𝒍; ℝ3).
Then, it remains to check. The following identity allows us to check the coercivity of 𝑎𝑬 on
𝑯(𝒄𝒖𝒓𝒍; ℝ3), which concludes the proof:

Im (𝑎𝑬(𝒇 , 𝜔𝒇 )) = − Im(𝜔) (‖𝒄𝒖𝒓𝒍 𝒇‖2𝑳2(ℝ3) + |𝜔|2 ‖𝒇‖2𝑳2(ℝ3) + 𝜔2
𝑝 ‖𝑓𝑧‖

2
𝐿2(ℝ3)) .

The previous lemmas finally allow us to conclude in the case where 𝜔 ∈ ℂ ⧵ ℝ:

Theorem 3.1.4. If 𝜔 ∈ ℂ ⧵ ℝ, the problem (3.3) is well-posed, i.e., there is a unique solution (𝑬, 𝑩) ∈
(𝑯 (𝒄𝒖𝒓𝒍; ℝ3))2 and there exists 𝐶𝜔 > 0, which depends on 𝜔, such that

‖𝑬‖2𝑯(𝒄𝒖𝒓𝒍;ℝ3) + ‖𝑩‖2𝑯(𝒄𝒖𝒓𝒍;ℝ3) ≤ 𝐶𝜔 (‖𝒋‖2𝑳2(ℝ3) + ‖𝒎‖2𝑳2(ℝ3)) .

29



Chapter 3. Hyperbolic Maxwell problem in free space

3.1.2 Plane wave analysis

We have seen in the previous section that the system (3.3) is well-defined in the case where
𝜔 ∈ ℂ ⧵ ℝ. However, similarly to the Helmholtz equation, this approach is not valid for 𝜔 ∈ ℝ.
Then, seeking for plane waves solutions shows that two kind of plane waves can appear. This
leads to split the problem (3.3) into two sub-problems, one carrying the hyperbolic behavior of
the system and the other carrying the elliptic behavior of the system.

This idea comes from [6], where the time dependence, however, was considered. The study
starts with the analysis of the plane waves of the problem. We seek solutions of (3.2) in the form
𝑬(𝒙) = ̂𝑬𝑒𝑖𝒌⋅𝒙 with 𝒌 ∈ ℝ3. Then, given a plane wave ̂𝑬𝑒𝑖𝒌⋅𝒙, it solves

𝒄𝒖𝒓𝒍 𝒄𝒖𝒓𝒍 𝑬 − 𝜔2�𝑬 = 0, (3.6)

if and only if

−𝒌 × (𝒌 × ̂𝑬) − 𝜔2� ̂𝑬 = −𝒌 × (𝒌 × ̂𝑬) + 𝜔2
𝑝 ( ̂𝑬 ⋅ 𝒆𝑧) 𝒆𝑧 − 𝜔2 ̂𝑬 = 0.

Let 𝔸(𝒌) be the matrix such that 𝔸(𝒌) ̂𝑬 = −𝒌 × (𝒌 × ̂𝑬) + 𝜔2
𝑝 ( ̂𝑬 ⋅ 𝒆𝑧) 𝒆𝑧. Then, the previous

equality can be rewritten as the eigenvalue problem

[𝔸(𝒌) − 𝜔2𝕀3] ̂𝑬 = 0.

More precisely, we want 𝒌 ∈ ℝ3, ̂𝑬 ∈ ℝ3 such that 𝜔2 is an eigenvalue of 𝔸(𝒌) associated to the
eigenvector ̂𝑬. This allows us to define the dispersion relation of the system:

𝐹𝜔(𝒌) ≔ det (𝔸(𝒌) − 𝜔2𝕀3) ,

Then, we seek 𝒌 ∈ ℝ3 such that 𝐹𝜔(𝒌) = 0, and, for such 𝒌, we determine the eigenspaces of
𝔸(𝒌) associated to 𝜔2. Notice that if 𝐹𝜔(𝒌) ≠ 0, then ̂𝑬 = 0. By definition, 𝐹𝜔(𝒌) is a third order
polynomial in 𝜔2. Let us define the following vectors

𝒌∥ ≔
⎛
⎜
⎜
⎝

𝑘𝑥
𝑘𝑦
0

⎞
⎟
⎟
⎠

, and 𝒌⟂ ≔
⎛
⎜
⎜
⎝

−𝑘𝑦
𝑘𝑥
0

⎞
⎟
⎟
⎠

.

Lemma 3.1.5 ([6]). The dispersion function is written:

𝐹𝜔(𝒌) = (𝜔2 − 𝜔⟂(𝒌)2) (𝜔2 − 𝜔+
‖ (𝒌)

2) (𝜔2 − 𝜔−
‖ (𝒌)

2)

= (𝜔2 − 𝜔2
𝑝) (𝜔2 − |𝒌|2) (𝜔2 − 𝛽(𝜔)−1|𝒌∥|2 − 𝑘2𝑧 ) ,

(3.7)

where 𝜔⟂(𝒌)2 = |𝒌|2, and 𝜔±
‖ (𝒌)

2 = 1
2 (𝜔

2
𝑝 + |𝒌|2 ± √Δ(𝒌)) with Δ(𝒌) = (𝜔2

𝑝 + |𝒌|2)
2
− 4𝑘2𝑧𝜔2

𝑝 ≤ 0.
Then 𝐹𝜔 vanishes if:

1. 𝜔⟂(𝒌)2 = 𝜔2 and the associated eigenspace is Λ⟂(𝒌) ≔ span (𝒌‖, 𝒆𝑧)
⟂.

2. 𝜔±
‖ (𝒌)

2 = 𝜔2 and the associated eigenspaces are subset of Λ‖(𝒌) ≔ span (𝒌‖, 𝒆𝑧).
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𝑘𝑥

𝑘𝑧

𝜔±
‖ (𝒌)

2 = 𝜔2

𝜔⟂(𝒌)2 = 𝜔2

𝜔 < 𝜔𝑝

𝑘𝑥

𝑘𝑧

𝜔±
‖ (𝒌)

2 = 𝜔2

𝜔⟂(𝒌)2 = 𝜔2

𝜔 > 𝜔𝑝

Figure 3.1: Dispersion curves in the plane {𝑘𝑦 = 0} with 𝜔2
𝑝 = 2 and 𝜔2 = 1 on the left plot and

𝜔2
𝑝 = 2 and 𝜔2 = 3 on the right plot.

Remark 3.1.6. The second item can be rewritten so that 𝒌 and 𝜔 are related through the following
quadratic equation:

|𝒌‖|2

𝜔2 − 𝜔2
𝑝
+

𝑘2𝑧
𝜔2 = 1. (3.8)

Therefore, the associated curve is an ellipse if 𝜔 > 𝜔𝑝 whereas the curve becomes a hyperbola if
𝜔 < 𝜔𝑝, see figure 3.1.

Proof. See Appendix A.1.

Let 𝑬 ∈ (𝒮 ′ (ℝ3))3 be a solution of the system (3.6). If we consider its Fourier transform
̂𝑬(𝒌) ≔ ℱ [𝑬] (𝒌), then according to plane wave analysis, the solution sought has two components
̂𝑬(𝒌) = ̂𝑬⟂(𝒌) + ̂𝑬‖(𝒌). The support of ̂𝑬⟂(𝒌) is a subset of {𝜔2 = |𝒌|2}, and we have in particular

𝒌∥ ⋅ ̂𝑬⟂ = 0, 𝒆𝑧 ⋅ ̂𝑬⟂ = 0. On the other hand, the support of ̂𝑬‖(𝒌) is a subset of the hyperbola defined
by equation (3.8), and 𝒌⟂ ⋅ ̂𝑬‖ = 0. Taking the inverse Fourier transform of ̂𝑬⟂(𝒌) and ̂𝑬‖(𝒌), we
can split 𝑬 = 𝑬⟂ + 𝑬‖ such that

𝜕𝑥𝑬⟂,𝑥(𝒙) + 𝜕𝑦𝑬⟂,𝑦(𝒙) = 0, 𝑬⟂,𝑧(𝒙) = 0, and 𝜕𝑥𝑬‖,𝑦(𝒌) − 𝜕𝑦𝑬‖,𝑥(𝒌) = 0,

where the identities hold in (𝒮 ′ (ℝ3))3.
This discussion justifies the separation of the system into two subsystems: a first part related

to 𝑬⟂, and a second part related to 𝑬‖. Then, the next section is devoted to the splitting of vector
fields.

3.1.3 Anisotropic Helmholtz decomposition

To decompose the system (3.3) into two subsystems, we are going to base ourselves on a lemma
of anisotropic decomposition of the vector fields of ℝ3 in ℂ2, taken from [6]. We introduce the
two following differential operators

curl⟂ 𝑭 ≔ 𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥, div⟂ 𝑭 ≔ 𝜕𝑥𝐹𝑥 + 𝜕𝑦𝐹𝑦,
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and the following functional spaces

𝑯(curl⟂ 0; ℝ3) ≔ {𝑭 ∈ 𝑳2 (ℝ3) ∶ curl⟂ 𝑭 = 0} , (3.9)

𝑯(div⟂ 0; ℝ3) ≔ {𝑭 ∈ 𝑳2 (ℝ3) ∶ div⟂ 𝑭 = 0, 𝐹𝑧 = 0} . (3.10)

Lemma 3.1.7 (Anisotropic Helmholtz decomposition, [6]). The following decomposition holds :

𝑳2 (ℝ3) = 𝑯 (curl⟂0; ℝ3)
⟂
⊕ 𝑯(div⟂ 0; ℝ3).

Proof. Let 𝑭 ∈ 𝑳2 (ℝ3) and its Fourier transform ̂𝑭 ≔ ℱ (𝑭). For any 𝒌 ∈ ℝ3 such that 𝑘2𝑥 + 𝑘2𝑦 ≠ 0,
we consider the following two orthogonal vector subspaces:

Λ‖(𝒌) = {𝒗 ∈ ℝ3 ∶ 𝒗 ⋅ 𝒌⟂ = 0} , Λ⟂(𝒌) = {𝒗 ∈ ℝ3 ∶ 𝒗 ⋅ 𝒌‖ = 0, 𝒗 ⋅ 𝒆𝑧 = 0} ,

and the associated orthogonal projectors 𝑃‖(𝒌) and 𝑃⟂(𝒌). Then, it is natural to set ̂𝑭‖(𝒌) =
𝑃‖(𝒌) ̂𝑭 (𝒌) and ̂𝑭⟂(𝒌) = 𝑃⟂(𝒌) ̂𝑭 (𝒌). Since the set {𝒌 ∈ ℝ3 ∶ 𝑘𝑥 = 𝑘𝑦 = 0} is negligible with re-
spect to Lebesgue measure, and ‖𝑃‖(𝒌)‖∞ = ‖𝑃⟂(𝒌)‖∞ = 1, ̂𝑭‖(𝒌), ̂𝑭⟂(𝒌) are functions of 𝑳2 (ℝ3).
Next, applying inverse Fourier transform, one obtains 𝑭‖, 𝑭⟂ ∈ 𝑳2 (ℝ3) such that 𝑭 = 𝑭‖ + 𝑭⟂.
Moreover, due to the definition of Λ‖(𝒌) and Λ⟂(𝒌), we clearly have 𝑭‖ ∈ 𝑯 (curl⟂ 0; ℝ3) and

𝑭⟂ ∈ 𝑯 (div⟂ 0; ℝ3), and this decomposition is unique because ℝ3 = Λ‖(𝒌)
⟂
⊕ Λ⟂(𝒌). Finally, the

two spaces are orthogonal thanks to the Plancherel identity:

(𝑭∥, 𝑭⟂)𝑳2(ℝ3) = ( ̂𝑭∥, ̂𝑭⟂)𝑳2(ℝ3) = ∫
ℝ3

̂𝑭∥(𝒌) ⋅ ̂𝑭⟂(𝒌) d𝒌 = 0.

Given 𝑭 = 𝑭‖ + 𝑭⟂ ∈ 𝑳2 (ℝ3), 𝑭‖ ∈ 𝑯 (𝐜𝐮𝐫𝐥⟂ 0; ℝ3) will be denoted as the longitudinal compo-
nent, and 𝑭⟂ ∈ 𝑯 (div⟂ 0; ℝ3) the transverse component. Also, notice that 𝑭⟂ and 𝒆𝑧 are orthogonal.
Then, in the view of Maxwell’s system, it is natural to split fields of 𝑯(𝒄𝒖𝒓𝒍; ℝ3). The following
lemma is about the regularity of the components of such vector fields.

Lemma 3.1.8. Let be 𝑭 ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3). We have 𝑭‖, 𝑭⟂ ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3). Moreover, 𝒄𝒖𝒓𝒍 𝑭‖ ∈
𝑯 (div⟂ 0; ℝ3) and 𝒄𝒖𝒓𝒍 𝑭⟂ ∈ 𝑯 (curl⟂ 0; ℝ3).

Proof. We have by direct computation

(𝒌 × 𝑭‖) ⋅ (𝒌 × 𝑭⟂) = |𝒌|2𝑭‖ ⋅ 𝑭⟂ − (𝒌 ⋅ 𝑭‖) (𝒌 ⋅ 𝑭⟂) = 0.

Therefore, using Plancherel theorem, we have

‖𝒄𝒖𝒓𝒍 𝑭‖2𝑳2(ℝ3) = ‖𝒌 × ̂𝑭 ‖
2
𝑳2(ℝ3) = ‖𝒌 × ̂𝑭‖ + 𝒌 × ̂𝑭⟂‖

2
𝑳2(ℝ3)

= ‖𝒌 × ̂𝑭‖‖
2
𝑳2(ℝ3) + ‖𝒌 × ̂𝑭⟂‖

2
𝑳2(ℝ3) = ‖𝒄𝒖𝒓𝒍 𝑭‖‖

2
𝑳2(ℝ3) + ‖𝒄𝒖𝒓𝒍 𝑭⟂‖

2
𝑳2(ℝ3) ,

which shows that 𝑭‖, 𝑭⟂ ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3). Next, we have

𝒌‖ ⋅ (𝒌 × ̂𝑭‖) = −𝑘𝑧𝒌⟂ ⋅ 𝑭‖ = 0, 𝒆𝑧 ⋅ (𝒌 × ̂𝑭‖) = 𝒌⟂ ⋅ 𝑭‖ = 0,

𝒌⟂ ⋅ (𝒌 × ̂𝑭⟂) = (−|𝒌‖|2𝒆𝑧 + 𝑘𝑧𝒌‖) ⋅ 𝑭⟂ = 0,

so that 𝒌 × ̂𝑭‖ ∈ Λ⟂(𝒌), 𝒌 × ̂𝑭⟂ ∈ Λ‖(𝒌) which concludes the proof.
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The anisotropic Helmholtz decomposition allows decomposing vector fields of 𝑳2 (ℝ3). In
particular, it makes possible to demonstrate the equivalence between the resolution of the system
(3.3) and the two subsystems resulting from the Helmholtz decomposition, in the case where
𝜔 ∈ ℂ ⧵ ℝ.

However, in the case where 𝜔 ∈ ℝ, this decomposition is not necessarily valid because, a
priori, the solution of (3.3) does not belong to 𝐋2(ℝ3), but rather to a larger weighted 𝐿2 space, see
e.g., [46, §2.6.5]. Thus, it would be desirable to find an anisotropic Helmholtz decomposition in a
more general space than 𝑳2 (ℝ3). The key tool of the proof of the previous lemma is the Fourier
transform, which is an isomorphism of 𝐿2 (ℝ3). Since the Fourier transform is also an isomorphism
of 𝒮 ′ (ℝ3), it is natural to look for an extension of the decomposition for distributions which

belong to (𝒮 ′ (ℝ3))3.
However, the decomposition is not valid for every distribution. Let us analyze which distribu-

tions are problematic. Consider for example the constant distribution 𝒆𝑥. Obviously,

div⟂ 𝒆𝑥 = curl⟂ 𝒆𝑥 = 0,

so that it has an infinite number of decomposition like in Lemma 3.1.7. Following the proof of
Lemma 3.1.7 with 𝑭 = 𝒆𝑥, we observe that the distributions 𝑃‖ ̂𝑭, 𝑃⟂ ̂𝑭 do not have sense. Indeed,

given a test function 𝝋 ∈ (𝒮 (ℝ3))3, we would have

⟨𝑃‖ ̂𝑭 , 𝝋⟩(𝒮(ℝ3))3 = ⟨(2𝜋)3/2𝛿0𝒆𝑥, 𝑃‖𝝋⟩(𝒮(ℝ3))3 ,

which has no sense since (𝑃‖𝝋) (0) is not defined. Similarly, it is easy to see that polynomial
distributions ∑𝑗∈{𝑥,𝑦 ,𝑧} 𝑝𝑗(𝒙)𝒆𝑗, where 𝑝𝑗 is a polynomial, can have several possible splitting as
longitudinal and transversal component, according to the terminology introduced above, and all
these distributions are singular at the point 𝒙 = 0.

Then, it suffices to consider distributions for which the multiplication with the projectors 𝑃‖
and 𝑃⟂ is valid. These observations lead us to define the following admissible class of distributions.

Assumption 3.1.9. Given a distribution 𝑭 ∈ 𝒮 ′ (ℝ3)3, there is 𝜀 > 0 and ̂𝑭𝑟𝑒𝑔 ∈ 𝐿1(𝐵𝜀)3 such that
ℱ (𝑭) = ̂𝑭𝑟𝑒𝑔 in 𝒟 ′(𝐵𝜀)3.

This assumption is sufficient to ensure the uniqueness of the decomposition, since it naturally
excludes polynomial distributions.

Lemma 3.1.10. Let be 𝑭 ∈ (𝒮 ′ (ℝ3))3 satisfying assumption 3.1.9. Then there is 𝑭⟂, 𝑭‖ ∈ (𝒮 ′ (ℝ3))3

satisfying assumption 3.1.9 such that 𝑭 = 𝑭⟂+𝑭‖, div⟂ 𝑭⟂ = 0, (𝑭⟂)𝑧 = 0 and curl⟂ 𝑭‖ = 0. Moreover,
𝑭‖ and 𝑭⟂ are uniquely defined.

Proof. Thanks to the assumption 3.1.9, 𝑃‖ℱ (𝑭‖), 𝑃‖ℱ (𝑭⟂) are well-defined, and so that 𝑭‖ and 𝑭⟂. It
only remains to prove the uniqueness of the decomposition. Let 𝑭‖, 𝑭⟂ satisfying assumption 3.1.9
be such that 𝑭‖ + 𝑭⟂ = 0. Therefore, we have ℱ (𝑭‖) = 𝑃‖ℱ (𝑭‖) = −𝑃‖ℱ (𝑭⟂) = 0 which ends the
proof.

Then, we will use the results of this section to decompose the electric and magnetic fields in
the next one.

Remark 3.1.11. Notice that the assumption (3.1.9) is not restrictive in our case. For example, when
𝜔 ∈ ℝ, a source term 𝒋 in (3.3) will generally have a compact support, which implies that ℱ (𝒋)
are analytic and assumption 3.1.9 is obviously verified.
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3.1.4 Reduced Maxwell problems

We will now apply the anisotropic Helmholtz decomposition to the system

|
𝑖𝜔 �𝑬 + 𝒄𝒖𝒓𝒍 𝑩 = 𝒋,

−𝑖𝜔𝑩 + 𝒄𝒖𝒓𝒍 𝑬 = 𝒎,
with � =

⎛
⎜
⎜
⎝

1 0 0

0 1 0

0 0 𝛽

⎞
⎟
⎟
⎠

, (3.11)

for 𝜔 ∈ ℂ ⧵ ℝ and 𝒋,𝒎 ∈ 𝑳2 (ℝ3) first, and then for 𝜔 ∈ ℝ ⧵ {±𝜔𝑝, 0} and 𝑬, 𝑩 ∈ (𝒮 ′ (ℝ3))3.
For 𝜔 ∈ ℂ ⧵ ℝ, according to Theorem 3.1.4, the solutions of this system are such that 𝑬, 𝑩 ∈

𝑯 (𝒄𝒖𝒓𝒍; ℝ3). Then, using Lemma 3.1.7, we split

𝑬 = 𝑬‖ + 𝑬⟂, 𝑩 = 𝑩‖ + 𝑩⟂, 𝒎 = 𝒎‖ + 𝒎⟂, 𝒋 = 𝒋‖ + 𝒋⟂,

where

• 𝑬‖, 𝑩‖ ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) ∩ 𝑯 (curl⟂ 0; ℝ3) and 𝒎‖, 𝒋‖ ∈ 𝑯 (curl⟂ 0; ℝ3),

• 𝑬⟂, 𝑩⟂ ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) ∩ 𝑯 (div⟂ 0; ℝ3) and 𝒎⟂, 𝒋⟂ ∈ 𝑯 (div⟂ 0; ℝ3).

Notice that we also have �𝑬‖ ∈ 𝑯 (curl⟂ 0; ℝ3) and �𝑬⟂ = 𝑬⟂ ∈ 𝑯 (div⟂ 0; ℝ3), as � only affects
the third component. We also have that curl⟂ �𝑭 = curl⟂ 𝑭 and div⟂ �𝑭 = div⟂ 𝑭.

Therefore, using the fact that the spaces 𝑯(curl⟂ 0; ℝ3) and 𝑯(div⟂ 0; ℝ3) are in direct sum
and Lemma 3.1.8, the previous system naturally decomposes into the two following problems:

|
|
|
|
|
|
|
|

find 𝑬‖ ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) ∩ 𝑯 (curl⟂ 0; ℝ3),

𝑩⟂ ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) ∩ 𝑯 (div⟂ 0; ℝ3) such that

𝑖𝜔�𝑬‖ + 𝒄𝒖𝒓𝒍 𝑩⟂ = 𝒋‖,

−𝑖𝜔𝑩⟂ + 𝒄𝒖𝒓𝒍 𝑬‖ = 𝒎⟂,

(3.12)

and
|
|
|
|
|
|
|
|

find 𝑬⟂ ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) ∩ 𝑯 (div⟂ 0; ℝ3),

𝑩‖ ∈ 𝑯 (𝒄𝒖𝒓𝒍; ℝ3) ∩ 𝑯 (curl⟂ 0; ℝ3) such that

𝑖𝜔𝑬⟂ + 𝒄𝒖𝒓𝒍 𝑩‖ = 𝒋⟂,

−𝑖𝜔𝑩‖ + 𝒄𝒖𝒓𝒍 𝑬⟂ = 𝒎‖.

(3.13)

Notice that �𝑬⟂ = 𝑬⟂, so that � disappears in the second problem.
In the view of the plane wave analysis, the first problem (3.12) can be described as hyperbolic,

whereas the second problem as elliptic. Provided that 𝜔 ∈ ℂ ⧵ ℝ, and in the view of Lemma 3.1.8,
solving the initial problem (3.3) is equivalent to solving both (3.12) and (3.13). On the other hand,
the two problems taken separately are also well-posed for 𝜔 ∈ ℂ ⧵ ℝ: the well-posedness of (3.12)
is reminiscent of Theorem 3.1.4, and the well-posedness of (3.13) comes from the classic Maxwell’s
equations theory.

Moreover, the third component of 𝑩⟂ and 𝑬⟂ vanishes, so that they are orthogonal with the
background magnetic field 𝑩0. Therefore, the system (3.12) (resp., (3.13)) can also be called as the
transverse magnetic problem or TM problem (resp., transverse electric problem or TE problem).

For 𝜔 ∈ ℝ, as for the Helmholtz equation, the solutions are not expected to belong to 𝑳2 (ℝ3)
but rather in a weighted 𝐿2 space. The following proposition shows the equivalence between the
original system (3.11) and the split systems in the sense of the distribution.
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Lemma 3.1.12. Let be 𝜔 ∈ ℝ\{−𝜔𝑝, 0, 𝜔𝑝} and 𝑬, 𝑩, 𝒋, 𝒎 ∈ (𝒮 ′ (ℝ3))3 satisfying the system (3.11).
If 𝒋,𝒎 follow assumption 3.1.9, then there exist unique 𝑬‖, 𝑬⟂, 𝑩‖, 𝑩⟂ such that 𝑬 = 𝑬‖ + 𝑬⟂,
𝑩 = 𝑩‖ + 𝑩⟂ as in lemma 3.1.10, and

|
𝑖𝜔�𝑬‖ + 𝒄𝒖𝒓𝒍 𝑩⟂ = 𝒋‖,

−𝑖𝜔𝑩⟂ + 𝒄𝒖𝒓𝒍 𝑬‖ = 𝒎⟂,
|
𝑖𝜔𝑬⟂ + 𝒄𝒖𝒓𝒍 𝑩‖ = 𝒋⟂,

−𝑖𝜔𝑩‖ + 𝒄𝒖𝒓𝒍 𝑬⟂ = 𝒎‖.

Notice that, given 𝑬‖, 𝑬⟂, 𝑩‖, 𝑩⟂ solutions of the two systems above, we can always reconstruct
𝑬 = 𝑬‖ + 𝑬⟂ and 𝑩 = 𝑩‖ + 𝑩⟂ solutions of the original problem (3.2). Therefore, it is sufficient

that 𝒋,𝒎 ∈ (𝒮 ′ (ℝ3))3 satisfy Assumption 3.1.9, to have the equivalence between the system 3.11
and the two sub-systems.

Proof. The key point is that if 𝒋 and 𝒎 follow assumption 3.1.9, then 𝑬 and 𝑩 follow it too. We
have

𝒄𝒖𝒓𝒍 𝒄𝒖𝒓𝒍 𝑬 − 𝜔2�𝑬 = 𝒄𝒖𝒓𝒍𝒎 + 𝑖𝜔𝒋,

𝒄𝒖𝒓𝒍 �−1 𝒄𝒖𝒓𝒍 𝑩 − 𝜔2𝑩 = 𝒄𝒖𝒓𝒍 �−1𝒋 − 𝑖𝜔𝒎.

Taking the Fourier transform of the previous equations, ̂𝑬 = ℱ (𝑬) (respectively 𝑩, 𝒋, 𝒎), we
obtain the two systems

𝔸𝐸 ̂𝑬 = 𝑖𝒌 × 𝒎̂ + 𝑖𝜔 ̂𝒋, 𝔸𝐵𝑩̂ = 𝑖𝒌 × �−1 ̂𝒋 − 𝑖𝜔𝒎̂,

where𝔸𝐸 ̂𝑬 = −𝒌 ×(𝒌 × ̂𝑬)−𝜔2� ̂𝑬 and𝔸𝐵𝑩̂ = −𝒌×�−1 (𝒌 × 𝑩̂)−𝜔2𝑩̂. The matrices𝔸𝐸(𝒌),𝔸𝐵(𝒌)
are smooth and there is 𝜀 > 0 such that there are invertible for every 𝒌 ∈ 𝐵𝜀. Therefore, we have
in 𝒟 ′(𝐵𝜀)3

̂𝑬 = 𝔸𝐸
−1 (𝑖𝒌 × 𝒎̂ + 𝑖𝜔 ̂𝒋) , 𝑩̂ = 𝔸𝐵

−1 (𝑖𝒌 × �−1 ̂𝒋 − 𝑖𝜔𝒎̂) .

Finally, as 𝔸𝐸
−1, 𝔸𝐵

−1 are smooth in 𝐵𝜀, and 𝒎̂ and ̂𝒋 satisfy Assumption 3.1.9, then ̂𝑬 and 𝑩̂ also
satisfy this assumption. Applying lemma 3.1.10 concludes the proof.

The two sub-problems defined above involve both the Sobolev space 𝑯(div⟂ 0; ℝ3), or at least
𝑬⟂, 𝑩⟂ have a vanishing third component. Therefore, in the two subsystems (3.12) and (3.13),
the number of unknowns involved is not 6 like the usual Maxwell’s equations, but only 5. This
justifies, in our case, the use of the term reduced.

Then, we will define below differential operators adapted to this reduced setting. The vector
fields with three components will be written with an italic bold font, the vector fields with two
components with a roman bold font and a tilde ~, and the scalar field with a medium weight
font. We introduce the following differential operators, provided 𝑭 = (𝐹𝑥, 𝐹𝑦, 𝐹𝑧)⊤, 𝐅̃ = (𝐹𝑥, 𝐹𝑦)⊤
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and a scalar function 𝑓:

𝐜𝐮𝐫𝐥 𝑭 = (
𝜕𝑦𝐹𝑧 − 𝜕𝑧𝐹𝑦
𝜕𝑧𝐹𝑥 − 𝜕𝑥𝐹𝑧

) , curl⟂ 𝑭 = 𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥, div⟂ 𝑭 = 𝜕𝑥𝐹𝑥 + 𝜕𝑦𝐹𝑦,

𝒄𝒖𝒓𝒍⟂ 𝐅̃ =
⎛
⎜
⎜
⎝

−𝜕𝑧𝐹𝑦
𝜕𝑧𝐹𝑥

𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥

⎞
⎟
⎟
⎠

, curl⟂ 𝐅̃ = 𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥, div⟂ 𝐅̃ = 𝜕𝑥𝐹𝑥 + 𝜕𝑦𝐹𝑦,

𝒄𝒖𝒓𝒍⟂ 𝑓 =
⎛
⎜
⎜
⎝

𝜕𝑦𝑓

−𝜕𝑥𝑓

0

⎞
⎟
⎟
⎠

, ∇̃ 𝑓 = (
𝜕𝑥𝑓

𝜕𝑦𝑓
) , ∆⟂ 𝑓 = 𝜕2𝑥𝑓 + 𝜕2𝑦𝑓 .

Notice that the font of the differential operator has been chosen according to its output.

The usual 𝒄𝒖𝒓𝒍-operator has the following relation 𝒄𝒖𝒓𝒍 𝒄𝒖𝒓𝒍 𝑭 = ∇ div 𝑭 − 𝜟𝑭. Similarly, we
have numerous relations involving the operators above, and can be found in Appendix A.2. But
two noticeable identities are the following:

𝐜𝐮𝐫𝐥 𝒄𝒖𝒓𝒍⟂ 𝐅̃ = ∇̃ div⟂ 𝐅̃ − 𝚫𝐅̃ (3.14)

𝐜𝐮𝐫𝐥 �−1 𝒄𝒖𝒓𝒍⟂ 𝐅̃ = 𝛽−1 ∇̃ div⟂ 𝐅̃ − 𝚫𝛽𝐅̃, (3.15)

where 𝚫 is the usual Laplacian operator on each coordinate of 𝐅̃, and 𝚫𝛽 is the following scaled
operator

Δ𝛽 ≔ 𝛽−1(𝜕2𝑥 + 𝜕2𝑦 ) + 𝜕2𝑧 (3.16)

applied on each coordinate of 𝐅̃. Furthermore, the relations like div 𝒄𝒖𝒓𝒍 𝒇 = 0 are false in general
with the operators defined above, but the identity div 𝒄𝒖𝒓𝒍⟂ 𝐅̃ = 0 still holds.

Remark 3.1.13. Given the usual 𝒄𝒖𝒓𝒍-operator and � = diag(1, 1, 𝛽), we have the following identity
for 𝑭 = (𝐹𝑥, 𝐹𝑦, 𝐹𝑧)⊤:

𝒄𝒖𝒓𝒍 �−1 𝒄𝒖𝒓𝒍 𝑭 =
⎛
⎜
⎜
⎝

𝜕𝑥 div (𝛽−1�𝑭) − Δ𝛽𝐹𝑥
𝜕𝑥 div (𝛽−1�𝑭) − Δ𝛽𝐹𝑦

𝜕𝑥 div 𝑭 − Δ𝐹𝑧

⎞
⎟
⎟
⎠

.

The anisotropic Helmholtz decomposition 3.1.7 then separates the first two components of the
third in the above identity. It results (3.15) and (3.14).

We have 𝑳2 (ℝ3) = 𝐿2 (ℝ3)3 and 𝐋̃2 (ℝ3) = 𝐿2 (ℝ3)2. Then, the operators above induce the
following Sobolev spaces

𝑯(𝐜𝐮𝐫𝐥; ℝ3) ≔ {𝑭 ∈ 𝑳2 (ℝ3) ∶ 𝐜𝐮𝐫𝐥 𝑭 ∈ 𝐋̃2 (ℝ3)} , (3.17)

𝐇̃ (𝒄𝒖𝒓𝒍⟂; ℝ3) ≔ {𝐅̃ ∈ 𝐋̃2 (ℝ3) ∶ 𝒄𝒖𝒓𝒍⟂ 𝐅̃ ∈ 𝑳2 (ℝ3)} , (3.18)

𝐇̃ (div⟂ 0; ℝ3) ≔ {𝐅̃ ∈ 𝐋̃2 (ℝ3) ∶ div⟂ 𝐅̃ = 0} . (3.19)

With these operators and spaces defined above, we can rewrite the subsystems (3.12) and (3.13).
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The transverse electric subsystem becomes

|
|
|
|
|
|
|
|

find 𝐄̃⟂ ∈ 𝐇̃ (𝒄𝒖𝒓𝒍⟂; ℝ3)) ∩ 𝐇̃ (div⟂ 0; ℝ3),

𝑩‖ ∈ 𝑯 (𝐜𝐮𝐫𝐥; ℝ3) ∩ 𝑯 (curl⟂ 0; ℝ3) such that

𝑖𝜔𝐄̃⟂ + 𝐜𝐮𝐫𝐥 𝑩‖ = 𝐣̃⟂,

−𝑖𝜔𝑩‖ + 𝒄𝒖𝒓𝒍⟂ 𝐄̃⟂ = 𝒎‖,

(3.20)

where 𝒎‖ ∈ 𝑯 (curl⟂ 0; ℝ3) and 𝐣̃⟂ ∈ 𝐇̃ (div⟂ 0; ℝ3). The corresponding one unknown equations
are

𝐜𝐮𝐫𝐥 𝒄𝒖𝒓𝒍⟂ 𝐄̃⟂ − 𝜔2𝐄̃⟂ = 𝐜𝐮𝐫𝐥𝒎‖ + 𝑖𝜔𝐣̃⟂,

𝒄𝒖𝒓𝒍⟂ 𝐜𝐮𝐫𝐥 𝑩‖ − 𝜔2𝑩‖ = 𝒄𝒖𝒓𝒍⟂ 𝐣̃⟂ − 𝑖𝜔𝒎‖.
(3.21)

The transverse magnetic subsystem becomes

|
|
|
|
|
|
|
|

find 𝑬‖ ∈ 𝑯 (𝐜𝐮𝐫𝐥; ℝ3) ∩ 𝑯 (curl⟂ 0; ℝ3),

𝐁̃⟂ ∈ 𝐇̃ (𝒄𝒖𝒓𝒍⟂; ℝ3)) ∩ 𝐇̃ (div⟂ 0; ℝ3) such that

𝑖𝜔�𝑬‖ + 𝒄𝒖𝒓𝒍⟂ 𝐁̃⟂ = 𝒋‖,

−𝑖𝜔𝐁̃⟂ + 𝐜𝐮𝐫𝐥 𝑬‖ = 𝐦̃⟂,

(3.22)

where 𝒋‖ ∈ 𝑯 (curl⟂ 0; ℝ3) and 𝐦̃⟂ ∈ 𝐇̃ (div⟂ 0; ℝ3). The corresponding one unknown equations
are

𝒄𝒖𝒓𝒍⟂ 𝐜𝐮𝐫𝐥 𝑬‖ − 𝜔2�𝑬‖ = 𝒄𝒖𝒓𝒍⟂ 𝐦̃⟂ + 𝑖𝜔𝒋‖,

𝐜𝐮𝐫𝐥 �−1 𝒄𝒖𝒓𝒍⟂ 𝐁̃⟂ − 𝜔2𝐁̃⟂ = 𝐜𝐮𝐫𝐥 �−1𝒋‖ − 𝑖𝜔𝐦̃⟂.
(3.23)

Now that the original system has been split into a reduced transverse electric problem, and a
reduced transverse magnetic problem, the two next section are devoted to their analysis.

Remark 3.1.14. The search for plane wave solutions 𝐄̃⟂(𝒙) =
̂𝐄̃⟂𝑒𝑖𝒌⋅𝒙 and 𝐁̃⟂(𝒙) =

̂𝐁̃⟂𝑒𝑖𝒌⋅𝒙 leads to
define the following dispersion function

𝐹 𝑇𝐸𝜔 (𝒌) ≔ det (𝔸𝑇𝐸(𝒌) − 𝜔2𝕀2) ,

𝐹 𝑇𝑀𝜔 (𝒌) ≔ det (𝔸𝑇𝑀(𝒌) − 𝜔2𝕀2) ,

where 𝔸𝑇𝐸(𝒌) = |𝒌|2𝕀2 − 𝐤‖𝐤⊤‖ , 𝔸
𝑇𝑀(𝒌) = (𝛽−1|𝐤‖|2 + 𝑘2𝑧 ) 𝕀2 − 𝛽−1𝐤‖𝐤⊤‖ and 𝐤‖ = (𝑘𝑥, 𝑘𝑦)⊤. The

eigenvalue-eigenvector pairs of 𝔸𝑇𝐸(𝒌) are (|𝒌|2, 𝐤⟂), with 𝐤⟂ = (−𝑘𝑦, 𝑘𝑥)⊤, and (𝑘2𝑧 , 𝐤‖), and the
eigenvalue-eigenvector pairs of 𝔸𝑇𝑀(𝒌) are (𝛽−1|𝐤‖|2 + 𝑘2𝑧 , 𝐤⟂) and (𝑘2𝑧 , 𝐤‖). Therefore,

𝐹 𝑇𝐸𝜔 (𝒌) = (𝑘2𝑧 − 𝜔2) (|𝒌|2 − 𝜔2) ,

𝐹 𝑇𝑀𝜔 (𝒌) = (𝑘2𝑧 − 𝜔2) (𝛽−1|𝐤‖|2 + 𝑘2𝑧 − 𝜔2) ,

Then, the transverse electric problem (3.20) captures the elliptic part whereas the transverse
magnetic problem (3.22) captures the hyperbolic part of the solution of the initial problem (3.3).
On the other hand, we observe that considering the problem with 5 unknowns introduce the
term 𝑘2𝑧 − 𝜔2 in the dispersion relation, which was not present in the original problem, see
Lemma 3.1.5. In particular, this term will introduce unwanted terms in the fundamental solutions
of the sub-problems.
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3.2 Transverse electric problem

This section is devoted to the study of the reduced transverse electric problem (3.20). Firstly, we
establish the existence of a solution by computing a fundamental solution. Then, its uniqueness
is discussed via the Silver-Müller condition.

3.2.1 Existence of solutions

The principle of the computation of the fundamental solution is the same as for the usual Maxwell’s
system. However, contrary to usual Maxwell’s system, the reduced TE problem is not symmetric.
Therefore, the fundamental solution to the TE problem (3.20) is a pair of distributions (𝔼̃⟂, 𝔹‖) ∈
𝓢̃′ × 𝓢′ where 𝓢̃′ = 𝒮 ′ (ℝ3)2×2 × 𝒮 ′ (ℝ3)2×3 and 𝓢′ = 𝒮 ′ (ℝ3)3×2 × 𝒮 ′ (ℝ3)3×3 such that

|
𝑖𝜔𝔼̃⟂ + 𝐜𝐮𝐫𝐥 𝔹‖ = 𝕛̃⟂,

−𝑖𝜔𝔹‖ + 𝒄𝒖𝒓𝒍⟂ 𝔼̃⟂ = 𝕞‖,
(3.24)

where 𝕛̃⟂ = (𝛿0𝕀2, 02×3), 𝕞‖ = (03×2, 𝛿0𝕀3) and 𝛿0 is the Dirac mass. The differential operators
must be taken column-wise.

Let us explain briefly the notation above by the following simple application. We decompose
𝔼̃⟂ = (𝔼̃𝑗

⟂, 𝔼̃𝑚
⟂) with 𝔼̃𝑗

⟂ ∈ 𝒮 ′ (ℝ3)2×2, 𝔼̃𝑚
⟂ ∈ 𝒮 ′ (ℝ3)2×3, and 𝔹‖ = (𝔹𝑗

‖, 𝔹
𝑚
‖ ) with 𝔹𝑗

‖ ∈ 𝒮 ′ (ℝ3)3×2,

𝔹𝑚
‖ ∈ 𝒮 ′ (ℝ3)3×3. Then, given the following source term 𝐣̃⟂ ∈ 𝒞∞

0 (ℝ3)2 and 𝒎‖ ∈ 𝒞∞
0 (ℝ3)3 for

the reduced TE problem, we can define the following solutions

𝑬⟂ = 𝔼̃⟂ ∗ (
𝐣̃⟂
𝒎‖

) = 𝔼̃𝑗
⟂ ∗ 𝐣̃⟂ + 𝔼̃𝑚

⟂ ∗ 𝒎‖, and 𝑩‖ = 𝔹‖ ∗ (
𝐣̃⟂
𝒎‖

) = 𝔹𝑗
‖ ∗ 𝐣̃⟂ + 𝔹𝑚

‖ ∗ 𝒎‖,

where ∗ is the matrix convolution operator.

Recall the fundamental solution of the Helmholtz equation for 𝜔 ∈ ℂ ⧵ ℝ:

𝒢𝜔(𝒙) =
𝑒𝛾 𝑖𝜔|𝒙|

4𝜋|𝒙|
, with 𝛾 = sign Im𝜔. (3.25)

Proposition 3.2.1. For 𝜔 ∈ ℂ ⧵ ℝ, the fundamental solution of the TE problem (3.24) is decomposed
into two parts

𝔼̃⟂ = 𝔼̃𝑟𝑒𝑔
⟂ + 𝔼̃𝑠𝑖𝑛𝑔

⟂ , 𝔹‖ = 𝔹𝑟𝑒𝑔
‖ + 𝔹𝑠𝑖𝑛𝑔

‖ ,

with

𝔼̃𝑟𝑒𝑔
⟂ = (𝑖𝜔𝒢𝜔𝕀2, 𝐜𝐮𝐫𝐥 (𝒢𝜔𝕀3)) , 𝔹𝑟𝑒𝑔

‖ = (𝒄𝒖𝒓𝒍⟂ (𝒢𝜔𝕀2) , −𝑖𝜔𝒢𝜔𝕀3 +
1
𝑖𝜔

Hess𝒢𝜔)

and

𝔼̃𝑠𝑖𝑛𝑔
⟂ = (𝑖𝜔 ∇̃ div⟂ (𝒢𝜔 ∗ 𝒢 1𝐷

𝜔 𝕀2) , − ∇̃ curl⟂ 𝜕𝑧 (𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 𝕀3) )

𝔹𝑠𝑖𝑛𝑔
‖ = (𝒄𝒖𝒓𝒍⟂ div⟂ 𝜕𝑧 (𝒢𝜔 ∗ 𝒢 1𝐷

𝜔 𝕀2) , −𝑖𝜔 𝒄𝒖𝒓𝒍⟂ curl⟂ 𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 𝕀3) ,

where 𝒢 1𝐷
𝜔 = 𝛿0(𝑥, 𝑦) ⊗ 𝒢 1𝐷

𝜔 (𝑧) and 𝒢 1𝐷
𝜔 (𝑧) = −𝛾 𝑒

𝛾 𝑖𝜔|𝑥|

2𝑖𝜔 , 𝛾 = sign Im𝜔.
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Proof. In the view of identity (3.14) and of the first one-unknown equation (3.21),

−𝚫𝔼̃⟂ + ∇̃ div⟂ 𝔼̃⟂ − 𝜔2𝔼̃⟂ = 𝐜𝐮𝐫𝐥𝕞‖ + 𝑖𝜔𝕛̃⟂, (3.26)

the first step of the proof consists in the computation of div⟂ 𝔼̃⟂. The application of identities
(A.9) and (A.8) to (3.24) gives

div⟂ (𝐜𝐮𝐫𝐥 𝔹‖ + 𝑖𝜔𝔼̃⟂) = −𝜕𝑧 curl⟂ 𝔹‖ + 𝑖𝜔 div⟂ 𝔼̃⟂ = div⟂ 𝕛̃⟂,

curl⟂ (𝒄𝒖𝒓𝒍⟂ 𝔼̃⟂ − 𝑖𝜔𝔹‖) = 𝜕𝑧 div⟂ 𝔼̃⟂ − 𝑖𝜔 curl⟂ 𝔹‖ = curl⟂𝕞‖.

Therefore, div⟂ 𝔼̃⟂ solves the following Helmholtz equation

−𝜕2𝑧 div⟂ 𝔼̃⟂ − 𝜔2 div⟂ 𝔼̃⟂ = 𝑖𝜔 div⟂ 𝕛̃⟂ − 𝜕𝑧 curl⟂𝕞‖.

Notice that it is the 1D Helmholtz equation settled in ℝ3. Therefore, for 𝜔 ∈ ℂ ⧵ ℝ, the unique
distribution 𝒢 1𝐷

𝜔 ∈ 𝒮 ′ (ℝ3) solving −𝜕2𝑧𝒢 1𝐷
𝜔 − 𝜔2𝒢 1𝐷

𝜔 = 𝛿0(𝒙) is 𝒢 1𝐷
𝜔 = 𝛿0(𝑥, 𝑦) ⊗ 𝒢 1𝐷

𝜔 (𝑧) where
𝒢 1𝐷
𝜔 is the fundamental solution of the 1D Helmholtz equation, see Lemma A.3.1. Then, we have

div⟂ 𝔼̃⟂ = 𝒢 1𝐷
𝜔 ∗ (𝑖𝜔 div⟂ 𝕛̃⟂ − 𝜕𝑧 curl⟂𝕞‖) = (𝑖𝜔 div⟂ (𝒢 1𝐷

𝜔 𝕀2) , −𝜕𝑧 curl⟂ (𝒢 1𝐷
𝜔 𝕀3)) ,

where ∗ must be understood as the convolution of a scalar function with a matrix. Next, going
back to (3.26), 𝔼̃⟂ solves a vector 3D Helmholtz equation. Then, given 𝒢𝜔 its fundamental solution,
we have that

𝔼̃⟂ = 𝒢𝜔 ∗ (𝐜𝐮𝐫𝐥𝕞‖ + 𝑖𝜔𝕛̃⟂ − ∇̃ div⟂ 𝔼̃⟂)

= (𝑖𝜔𝒢𝜔𝕀2 + 𝑖𝜔 ∇̃ div⟂ (𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 𝕀2) , 𝐜𝐮𝐫𝐥 (𝒢𝜔𝕀3) − ∇̃ curl⟂ 𝜕𝑧 (𝒢𝜔 ∗ 𝒢 1𝐷

𝜔 𝕀3) ) .

Notice that the convolution product 𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 is well-defined in the sense of distribution. In-

deed, the mapping (𝑥, 𝑦) ↦ 𝒢𝜔(𝑥, 𝑦 , ⋅) belongs to 𝐿1 (ℝ2, 𝐿1(ℝ)) and 𝒢 1𝐷
𝜔 ∈ 𝐿1(ℝ), so that the

convolution 𝒢𝜔(𝑥, 𝑦 , ⋅) ∗ 𝒢 1𝐷
𝜔 exists for almost every (𝑥, 𝑦) ∈ ℝ2.

As for 𝔹‖, we use (3.24) which yields

𝔹‖ =
1
𝑖𝜔

(𝒄𝒖𝒓𝒍⟂ 𝔼̃⟂ −𝕞‖)

= (𝒄𝒖𝒓𝒍⟂ (𝒢𝜔𝕀2) + 𝒄𝒖𝒓𝒍⟂ ∇̃ div⟂ (𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 𝕀2) ,

1
𝑖𝜔

𝒄𝒖𝒓𝒍⟂ 𝐜𝐮𝐫𝐥 (𝒢𝜔𝕀3) −
1
𝑖𝜔
𝛿0𝕀3 −

1
𝑖𝜔

𝒄𝒖𝒓𝒍⟂ ∇̃ curl⟂ 𝜕𝑧 (𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 𝕀3)) .

Notice that 𝒄𝒖𝒓𝒍⟂ ∇̃ 𝑓 = −𝜕𝑧 𝒄𝒖𝒓𝒍⟂ 𝑓. Using the last identity and (A.4), the fact 𝒢𝜔 and 𝒢 1
𝜔 are

the fundamental solutions of the 3D and 1D Helmholtz equation in ℝ3, we have the following
expressions

𝔹‖ = (𝒄𝒖𝒓𝒍⟂ (𝒢𝜔𝕀2) − 𝒄𝒖𝒓𝒍⟂ div⟂ 𝜕𝑧 (𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 𝕀2) ,

−𝑖𝜔𝒢𝜔𝕀3 +
1
𝑖𝜔

Hess𝒢𝜔 − 1
𝑖𝜔

𝒄𝒖𝒓𝒍⟂ curl⟂ (𝒢𝜔𝕀3 − 𝜕2𝑧𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 𝕀3)) .

= (𝒄𝒖𝒓𝒍⟂ (𝒢𝜔𝕀2) + 𝒄𝒖𝒓𝒍⟂ div⟂ 𝜕𝑧 (𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 𝕀2) ,

−𝑖𝜔𝒢𝜔𝕀3 +
1
𝑖𝜔

Hess𝒢𝜔 − 𝑖𝜔 𝒄𝒖𝒓𝒍⟂ curl⟂ 𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 𝕀3) .
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Remark 3.2.2. With the Fourier transform, we have that ℱ𝒢𝜔(𝒌) = (|𝒌|2 − 𝜔2)−1 and ℱ𝒢 1𝐷
𝜔 (𝒌) =

(𝑘2𝑧 − 𝜔2)−1. Then, we have

ℱ[𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 ] (𝒌) = ℱ𝒢𝜔(𝒌) × ℱ𝒢 1𝐷

𝜔 (𝒌) = 1
(|𝒌|2 − 𝜔2)(𝑘2𝑧 − 𝜔2)

.

Therefore, the separation of the fundamental solution into regular and singular parts is justified
by the remark 3.1.14.

As in the classic fundamental solution of the Maxwell’s equation, the Hessian of 𝒢𝜔 appears
in 𝔹𝑟𝑒𝑔

‖ . Therefore, although the convolution Hess𝒢𝜔 ∗ 𝒎‖ may be well-defined in the sense of
the distributions, it may not represent a function. To address this issue, we make an additional
assumption on the regularity of 𝒎‖.

Proposition 3.2.3. For 𝜔 ∈ ℂ ⧵ ℝ, given 𝒎‖ ∈ 𝑯 (curl⟂ 0; ℝ3) ∩ 𝑯 (div; ℝ3), 𝐣̃⟂ ∈ 𝐇̃ (div⟂ 0; ℝ3),
the unique solution of the TE problem (3.20) is

𝐄̃⟂ = 𝔼̃𝑟𝑒𝑔
⟂ ∗ (

𝐣̃⟂
𝒎‖

) = 𝒢𝜔 ∗ (𝑖𝜔𝐣̃⟂ + 𝐜𝐮𝐫𝐥𝒎‖) ,

𝐁‖ = 𝔹𝑟𝑒𝑔
‖ ∗ (

𝐣̃⟂
𝒎‖

) = 𝒢𝜔 ∗ (𝒄𝒖𝒓𝒍⟂ 𝐣̃⟂ − 𝑖𝜔𝒎‖) +
1
𝑖𝜔
∇𝒢𝜔 ∗ div𝒎‖.

Proof. It is easy to check that 𝔼̃𝑠𝑖𝑛𝑔
⟂ ∗ (𝐣̃⟂, 𝒎‖)

⊤
and 𝔹̃𝑠𝑖𝑛𝑔

‖ ∗ (𝐣̃⟂, 𝒎‖)
⊤
vanish under the above

constraints on 𝒎‖ and 𝐣̃⟂. For example,

∇̃ div⟂ (𝒢𝜔 ∗ 𝒢 1𝐷
𝜔 𝕀2) ∗ 𝐣̃⟂ = (𝒢𝜔 ∗ 𝒢 1𝐷

𝜔 ) ∗ ∇̃ div⟂ 𝐣̃⟂ = 0.

The regularity comes from the fact that 𝒢𝜔, 𝜕𝑖𝒢𝜔 ∈ 𝐿1 (ℝ3) for 𝑖 ∈ {𝑥, 𝑦 , 𝑧}, and that the source
terms are square-integrable.

Remark 3.2.4. The complete fundamental solution to the usual Maxwell’s equations can be written
in a similar manner as 𝔼 = (𝔼, 𝔹) and 𝔹 = (𝔹, −𝔼), where 𝔼,𝔹 ∈ 𝒮 ′ (ℝ3)3×3 with

𝔼 = 𝑖𝜔𝒢𝜔𝕀3 −
1
𝑖𝜔

Hess𝒢𝜔, 𝔹 = 𝒄𝒖𝒓𝒍 𝒢𝜔𝕀3.

Then, given 𝒋⟂ and 𝒎‖ as in Proposition 3.2.3, one can verify that the convolutions of 𝔼, 𝔹 with
the source terms coincide with the expressions given in Proposition 3.2.3.

Let us now prove the existence of solution for 𝜔 ∈ ℝ ⧵ {±𝜔𝑝, 0}. First, recall the definition of
the outgoing fundamental solution.

Lemma 3.2.5. For all 𝜔 ∈ ℝ ⧵ {0}, we have lim𝜈→0+ 𝒢𝜔+𝑖𝜈 = 𝒢+
𝜔 in𝑊 1,1

𝑙𝑜𝑐 (ℝ3) where 𝐺+
𝜔 (𝒙) =

𝑒𝑖𝜔|𝒙|
4𝜋|𝒙| .

This allows us to state the following existence theorem.

Theorem 3.2.6 (Existence of classic solutions). Let 𝜔 ∈ ℝ ⧵ {0}, 𝒎‖ ∈ 𝑯 (curl⟂ 0; ℝ3) ∩ (𝒞 2
0 (ℝ3))

3
,

and 𝐣̃⟂ ∈ 𝐇̃ (div⟂ 0; ℝ3) ∩ (𝒞 2
0 (ℝ3))

2
. Then,

𝐄̃+⟂ = 𝒢+
𝜔 ∗ (𝑖𝜔𝐣̃⟂ + 𝐜𝐮𝐫𝐥𝒎‖) , 𝑩+

‖ = 𝒢+
𝜔 ∗ (𝒄𝒖𝒓𝒍⟂ 𝐣̃⟂ − 𝑖𝜔𝒎‖) +

1
𝑖𝜔
∇𝒢+

𝜔 ∗ div𝒎‖.

are such that 𝐄̃+⟂ ∈ (𝒞 1 (ℝ3))2, 𝑩+
‖ ∈ (𝒞 1 (ℝ3))3, and satisfy (3.20) in a strong sense.
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3.2.2 Silver-Müller condition

Classically, in the case of unbounded problems, the uniqueness is ensured by a radiation condition,
e.g., the Sommerfeld condition for the Helmholtz problem, or the Silver-Müller condition for the
harmonic Maxwell’s problem. In fact, without the radiation condition, it is easy to construct
infinitely many solutions of the TE problem (3.20) by considering convex combination of (𝐄̃+⟂, 𝑩+

‖ )
given in Theorem 3.2.6 and

𝐄̃−⟂ = 𝒢−
𝜔 ∗ (𝑖𝜔𝐣̃⟂ + 𝐜𝐮𝐫𝐥𝒎‖) , 𝑩−

‖ = 𝒢−
𝜔 ∗ (𝒄𝒖𝒓𝒍⟂ 𝐣̃⟂ − 𝑖𝜔𝒎‖) +

1
𝑖𝜔
∇𝒢−

𝜔 ∗ div𝒎‖,

where 𝒢−
𝜔 ≔ lim𝜈→0+ 𝒢𝜔−𝑖𝜈 and 𝒢𝜔−𝑖𝜈 given by (3.25). With a normalized speed of light 𝑐 = 1,

recall that the weak form of the usual Silver-Müller conditions reads

∫
𝑆𝑅
|𝑬 − 𝑩 × 𝒏|2 ds −−−−−−→

𝑅→+∞
0, (3.27)

∫
𝑆𝑅
|𝑩 + 𝑬 × 𝒏|2 ds −−−−−−→

𝑅→+∞
0, (3.28)

where 𝑆𝑅 is the sphere of radius 𝑅, refer to [24, §6.2, 17, §1.2] for details. These two conditions
are equivalent and both select the outgoing solution. Then, according to the Remark 3.2.4, the
outgoing solution (𝑬+⟂ , 𝑩+

‖ ) satisfies the conditions above, where 𝑬+⟂ = (𝐄̃+⟂, 0)
⊤
.

Theorem 3.2.7. Let 𝜔 ∈ ℝ ⧵ {0} and (𝐄̃⟂, 𝑩‖) ∈ (𝒞 1 (ℝ3))2 × (𝒞 1 (ℝ3))3 be a solution of the
homogeneous reduced TE problem (3.20). If (𝑬⟂, 𝑩‖) satisfies either (3.27) or (3.28), then it vanishes.

3.3 Transverse magnetic problem

This section is devoted to the study of the reduced transverse magnetic problem (3.22). Because
this problem is less “classic” than the previous one, we first study its scalar counterpart, which
has the same importance for the reduced TM problem as the Helmholtz equation for the usual
Maxwell’s problem. Then, we study the existence and uniqueness of the solution for the TM
problem.

3.3.1 Associated scalar equation

The scaled operator appears naturally if we use the identity (3.15) with the one unknown equa-
tion (3.23) involving 𝐁̃⟂. The resolution reduced TM problem is clearly linked to the resolution of
the scaled Helmholtz equation:

|
find 𝑢 such that

−𝛽(𝜔)−1 (𝜕2𝑥 + 𝜕2𝑦) 𝑢 − 𝜕2𝑧 𝑢 − 𝜔2𝑢 = 𝑓 , in 𝒟 ′ (ℝ3),
with 𝛽(𝜔) = 1 −

𝜔2
𝑝

𝜔2 . (3.29)

The spaces to which 𝑢 and 𝑓 belong will be specified later. Obviously, 𝛽(𝜔) > 0 for 𝜔 ∈ (𝜔𝑝, +∞)
and 𝛽(𝜔) < 0 for 𝜔 ∈ (0, 𝜔𝑝). Therefore, the equation is elliptic for 𝜔 ∈ (𝜔𝑝, +∞) and is hyperbolic
for 𝜔 ∈ (0, 𝜔𝑝). We are interested in the latter case.

Let us make some opening remarks on this equation. The existence of a distribution 𝒢 ∈
𝒮 ′ (ℝ3) which solves the equation above with a Dirac mass as a source term has already been
treated in the classic literature, see e.g., [34, Theorem 6.2.3, p. 141]. However, the above equation
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is mostly encountered in the study of wave equations in time regime, i.e., when 𝛽 < 0 does not
depend on 𝜔, and the variable 𝑧 is replaced by 𝑡 ∈ ℝ:

−𝛽−1 (𝜕2𝑥 + 𝜕2𝑦) 𝑢 − 𝜕2𝑡 𝑢 − 𝜔2𝑢 = 𝑓 (𝑥, 𝑦 , 𝑡).

In this case, having causal solutions is natural and desirable. This implies that the support of a
solution 𝑢 should be a subset of the cone

• {(𝑥, 𝑦 , 𝑡) ∶ |𝛽|−1/2 𝑡 > (𝑥2 + 𝑦2)1/2} for a forward solution, i.e., vanishing for 𝑡 < 0,

• {(𝑥, 𝑦 , 𝑡) ∶ |𝛽|−1/2 𝑡 < −(𝑥2 + 𝑦2)1/2} for a backward solution, i.e., vanishing for 𝑡 > 0.

In both cases, a solution should vanish on the “non-causal” cone

{(𝑥, 𝑦 , 𝑡) ∶ |𝛽|−1/2 |𝑡 | < (𝑥2 + 𝑦2)1/2} .

In our case, the “causality” is a priori not required in the sense that the support of the
fundamental solution of (3.29) is not necessarily a subset of the cones

{(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ |𝑧| > |𝛽(𝜔)|1/2(𝑥2 + 𝑦2)1/2} .

As a matter of fact, we seek the solution 𝑢 to be the limiting absorption solution of 𝑢𝜔+𝑖𝜈 when
𝜈 > 0 goes to 0.

Finally, we denote the equation (3.29) as the scaled Helmholtz equation even if 𝛽(𝜔) may be
negative. This equation must be distinguished with the usual scaled Helmholtz equation

−𝛽−1 (𝜕2𝑥 + 𝜕2𝑦) 𝑢 − 𝜕2𝑧 𝑢 − 𝜔2𝑢 = 𝑓 , (3.30)

with 𝛽 > 0. Some results on the usual scaled Helmholtz equation can be found in Appendix A.3.

This problem has been extensively studied in the 2D case in [22] for (0, 𝜔𝑝). Therefore, the
analysis presented in this section follows the same steps: the problem with absorption is studied
first. Then, an existence theorem via the computation of a fundamental solution is stated. Finally,
the section is concluded by a uniqueness condition

3.3.1.1 Problem with absorption

First consider the following problem, with Im𝜔 ≠ 0:

|
find 𝑢𝜔 ∈ 𝐻 1(Ω) such that

−𝛽(𝜔)−1 (𝜕2𝑥 + 𝜕2𝑦) 𝑢𝜔 − 𝜕2𝑧 𝑢𝜔 − 𝜔2𝑢𝜔 = 𝑓 ,
(3.31)

where 𝑓 ∈ 𝐿2(Ω). Then, we have the following well-posedness result.

Proposition 3.3.1. Given 𝜔 ∈ ℂ ⧵ ℝ, the problem (3.31) is well-posed for all 𝑓 ∈ 𝐿2(Ω), and there is
𝐶(𝜔) > 0 such that

‖𝑢𝜔‖𝐻 1(ℝ3) ≤
|𝜔|
𝐶(𝜔)

‖𝑓‖𝐿2(ℝ3) .
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3.3. Transverse magnetic problem

Proof. Notice that we can express the equation of the problem (3.31) in the divergence equation

− div (𝛽(𝜔)−1�∇𝑢) − 𝜔2𝑢 = 𝑓 , � = (
1 0 0
0 1 0
0 0 𝛽(𝜔)

) . (3.32)

Then, the problem (3.31) is equivalent to

|
Find 𝑢𝜔 ∈ 𝐻 1(Ω) such that

𝑎𝜔(𝑢𝜔, 𝑣) = ℓ(𝑣), for all 𝑣 ∈ 𝐻 1(Ω),

where

𝑎𝜔(𝑢, 𝑣) = ∫
ℝ3

(𝛽−1�∇𝑢 ⋅ ∇𝑣 − 𝜔2𝑢𝑣) d𝒙, and ℓ(𝑣) = ∫
ℝ3

𝑓 𝑣 d𝒙.

Obviously, 𝑎𝜔 and ℓ are continuous with respect to the 𝐻 1 (ℝ3)-norm. A quick computation yields
that Im (𝜔𝛽(𝜔)−1) and Im𝜔 have the same sign. Therefore, we have for 𝑢 ∈ 𝐻 1 (ℝ3)

Im 𝑎𝜔(𝑢, 𝜔𝑢) = Im (𝜔𝛽(𝜔)−1) (‖𝜕𝑥𝑢‖
2
𝐿2(ℝ3) + ‖𝜕𝑦𝑢‖

2
𝐿2(ℝ3)) + Im(𝜔) ‖𝜕𝑧𝑢‖

2
𝐿2(ℝ3) + Im(𝜔)|𝜔|2 ‖𝑢‖2𝐿2(ℝ3) .

Consequently, there is a constant 𝐶(𝜔) > 0 such that for all 𝑢 ∈ 𝐻 1 (ℝ3)

|Im 𝑎𝜔 (𝑢, 𝜔𝑢)| ≥ 𝐶(𝜔) ‖𝑢‖2𝐻 1(ℝ3) .

The Lax-Milgram theorem allows us to conclude about the well-posedness.

A flaw in previous proposition is that it cannot be applied for 𝜔 ∈ ℝ. Indeed, the constant
𝐶(𝜔) goes to zero when 𝜔 approaches the real axis. Therefore, in order to show the existence of a
limiting absorption solution, another characterization of the solution is needed. In this view, the
following proposition gives the fundamental solution 𝒢 𝛽

𝜔 ∈ 𝒮 ′ (ℝ3) of the problem:

−𝛽(𝜔)−1 (𝜕2𝑥 + 𝜕2𝑦) 𝑢 − 𝜕2𝑧 𝑢 − 𝜔2𝑢 = 𝛿0, (3.33)

for 𝜔 ∈ ℂ ⧵ ℝ. From this point forward, we employ the principal determination of the complex
square root, with the branch cut along (−∞, 0]. Notice that Re√𝑧 > 0 for all 𝑧 ∈ ℂ ⧵ (−∞, 0].

Proposition 3.3.2. The unique solution of (3.33) for 𝜔 ∈ ℂ ⧵ ℝ is

𝒢 𝛽
𝜔 (𝑥, 𝑦 , 𝑧) = 𝛽(𝜔)

exp (𝛾 𝑖𝜔√𝛽(𝜔)(𝑥2 + 𝑦2) + 𝑧2)

4𝜋√𝛽(𝜔)(𝑥2 + 𝑦2) + 𝑧2
, 𝛾 = sign(Im𝜔). (3.34)

Moreover, we have 𝒢 𝛽
𝜔 ∈ 𝐿1 (ℝ3).

This fundamental solution must be compared with the fundamental solution of the scaled
Helmholtz equation (3.30), see Lemma A.3.3. However, the main difference is that 𝛽(𝜔) is not real
in general so that Lemma A.3.3 cannot be applied directly. Therefore, the proof below develops a
stronger argument using the analyticity of the problem.

Remark 3.3.3. The existence of two different fundamental solutions would contradict Proposi-
tion 3.3.1. Indeed, given 𝑓 ∈ 𝐿2 (ℝ3), 𝒢 𝛽

𝜔 ∗ 𝑓 is the solution of (3.31).
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Before starting the proof, let us fix the convention used with the Fourier transform. Recall
that the unitary Fourier transform in ℝ3 is given by

ℱ [𝑢](𝒌) = 1

(2𝜋)3/2
∫
ℝ3

𝑢(𝒙)𝑒−𝑖𝒌⋅𝒙d𝒙.

Still, in the view of the scaled Helmholtz equation 3.31, it is appropriate to consider the partial
unitary Fourier transform along the 𝑥, 𝑦-directions:

ℱ𝑥,𝑦[𝑢](𝑘𝑥, 𝑘𝑦, 𝑧) =
1
2𝜋 ∫

ℝ2
𝑢(𝑥, 𝑦 , 𝑧)𝑒−𝑖(𝑥𝑘𝑥+𝑦𝑘𝑦)dxdy.

Proof of proposition 3.3.2. The proof follows [22], and is separated in two steps. The first step
consists in showing that there is a unique fundamental solution 𝒢 𝛽

𝜔 for all 𝜔 ∈ ℂ ⧵ ℝ and that the
mapping 𝜔 ↦ 𝒢 𝛽

𝜔 is analytic on ℂ ⧵ ℝ. Next, we compute an explicit expression for 𝒢 𝛽
𝜔 on an

appropriate subset of ℂ ⧵ ℝ. The analytic continuation theorem will allow us to conclude since
this expression will also be analytic on ℂ ⧵ ℝ.

First, we apply the partial Fourier transform to (3.33) along the 𝑥, 𝑦-directions, which results
in a 1D Helmholtz equation:

−𝜕2𝑧ℱ𝑥,𝑦𝒢
𝛽
𝜔 − (𝜔2 − 𝛽(𝜔)−1(|𝑘𝑥|2 + |𝑘𝑦|2))ℱ𝑥,𝑦𝒢

𝛽
𝜔 = 𝛿0(𝑧).

Let
𝜎𝜔(𝑘𝑥, 𝑘𝑦) ≔ √𝛽(𝜔)

−1 (𝑘2𝑥 + 𝑘2𝑦) − 𝜔2.

It is defined unambiguously for 𝑘𝑥, 𝑘𝑦, 𝜔 such that 𝛽(𝜔)−1 (𝑘2𝑥 + 𝑘2𝑦) − 𝜔2 ∈ ℂ ⧵ (−∞, 0). A quick
computation gives

Im (𝛽(𝜔)−1) = − Im(𝜔2)
𝜔2
𝑝

|𝜔2 − 𝜔2
𝑝|2

,

so that

Im (𝛽(𝜔)−1 (𝑘2𝑥 + 𝑘2𝑦) − 𝜔2) = − Im(𝜔2) (1 +
|𝒌‖|2𝜔2

𝑝

|𝜔2 − 𝜔2
𝑝|2

) = −2Re(𝜔) Im(𝜔) (1 +
|𝒌‖|2𝜔2

𝑝

|𝜔2 − 𝜔2
𝑝|2

) ,

where |𝒌‖|2 = 𝑘2𝑥 + 𝑘2𝑦 . Notice that the last expression vanishes only if 𝜔 ∈ ℝ ∪ 𝑖ℝ. Of course,
we exclude the case 𝜔 ∈ ℝ, and for 𝜔 ∈ 𝑖ℝ ⧵ {0}, we have 𝛽(𝜔)−1 ∈ (0, +∞), and similarly for
𝛽(𝜔)−1 (𝑘2𝑥 + 𝑘2𝑦) − 𝜔2. Therefore, 𝜎𝜔 is well-defined for all 𝜔 ∈ ℂ ⧵ ℝ and (𝑘𝑥, 𝑘𝑦) ∈ ℝ2, and the
1D Helmholtz equation becomes

−𝜕2𝑧ℱ𝑥,𝑦𝒢
𝛽
𝜔 − (𝑖𝜎𝜔)

2ℱ𝑥,𝑦𝒢
𝛽
𝜔 = 𝛿0(𝑧).

By definition of the complex square root, Im(𝑖𝜎𝜔) = Re 𝜎𝜔 > 0. Therefore, according to
lemma A.3.1, we have for all 𝜔 ∈ ℂ ⧵ ℝ

ℱ𝑥,𝑦𝒢
𝛽
𝜔 (𝑘𝑥, 𝑘𝑦, 𝑧) =

𝑒−𝜎𝜔(𝑘𝑥,𝑘𝑦)|𝑧|

2𝜎𝜔(𝑘𝑥, 𝑘𝑦)
, ∀(𝑘𝑥, 𝑘𝑦, 𝑧) ∈ ℝ3. (3.35)

On one hand, the mapping (𝑘𝑥, 𝑘𝑦) ↦ 𝜎𝜔(𝑘𝑥, 𝑘𝑦) cannot vanish for 𝜔 ∈ ℂ ⧵ ℝ. On the other
hand, |𝜎𝜔(𝑘𝑥, 𝑘𝑦)| ≳ (𝑘2𝑥 + 𝑘2𝑦 )1/2 and Re 𝜎𝜔(𝑘𝑥, 𝑘𝑦) ≳ (𝑘2𝑥 + 𝑘2𝑦 )1/2 for large (𝑘2𝑥 + 𝑘2𝑦 )1/2. Thus,

(𝑘𝑥, 𝑘𝑦) ↦ ℱ𝑥,𝑦𝒢
𝛽
𝜔 (𝑘𝑥, 𝑘𝑦, 𝑧) ∈ 𝐿1 (ℝ2) for all 𝑧 ∈ ℝ∗ and

𝒢 𝛽
𝜔 (𝑥, 𝑦 , 𝑧) =

1
(2𝜋)2 ∫ℝ2

𝑒−𝜎𝜔(𝑘𝑥,𝑘𝑦)|𝑧|

2𝜎𝜔(𝑘𝑥, 𝑘𝑦)
𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)d𝑥d𝑦. (3.36)
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The mapping 𝜔 ↦ 𝜎𝜔(𝑘𝑥, 𝑘𝑦) is analytic on ℂ ⧵ ℝ. Therefore, classic integration theorems (see,

e.g., [57, Theorem I.7, p. 308]) imply that 𝜔 ↦ 𝒢 𝛽
𝜔 (𝑥, 𝑦 , 𝑧) is analytic on ℂ ⧵ ℝ for almost every

(𝑥, 𝑦 , 𝑧) ∈ ℝ3.
Next, we remark that 𝛽(𝜔) ∈ (0, +∞) for 𝜔 ∈ 𝑖ℝ. As a consequence, applying Lemma A.3.3 to

any 𝜔 ∈ 𝑖ℝ with ̃𝛽 = 𝛽(𝜔) yields

𝒢 𝛽
𝜔 (𝑥, 𝑦 , 𝑧) = 𝛽(𝜔)

exp (𝛾 𝑖𝜔√𝛽(𝜔)(𝑥2 + 𝑦2) + 𝑧2)

4𝜋√𝛽(𝜔)(𝑥2 + 𝑦2) + 𝑧2
, 𝛾 = sign(Im𝜔).

Due to the analyticity of the mapping 𝜔 ↦ 𝛽(𝜔) on ℂ⧵ {0} and the fact that 𝛽(𝜔) ∈ (−∞, 0] only if
𝜔 ∈ ℝ, the mapping of 𝜔 to the latter expression is also analytic on ℂ ⧵ ℝ for all (𝑥, 𝑦 , 𝑧) ∈ ℝ3 ⧵ {0}.
The proof is concluded, as announced, with the application of the analytic continuation theorem.

Finally, given 𝜔 ∈ ℂ ⧵ ℝ, one may check that 𝒢 𝛽
𝜔 decreases exponentially at infinity. Indeed,

|𝒢 𝛽
𝜔 (𝒙)| =

|𝛽(𝜔)| exp (−𝛾 Im (𝜔√𝛽(𝜔)(𝑥2 + 𝑦2) + 𝑧2))

4𝜋 |𝛽(𝜔)(𝑥2 + 𝑦2) + 𝑧2|1/2
, 𝛾 = sign(Im𝜔),

and one may check that 𝛾 Im (𝜔√𝛽(𝜔)(𝑥2 + 𝑦2) + 𝑧2) is positive and tends to infinity as |𝒙| in-

creases. On the other hand, it is also easy to check that 𝒢 𝛽
𝜔 ∈ 𝐿1𝑙𝑜𝑐(𝐵1(0)) with the spherical

coordinates. The two previous arguments yields 𝒢 𝛽
𝜔 ∈ 𝐿1 (ℝ3).

Remark 3.3.4. The same kind of argument can be applied for the complex scaled Helmholtz
equation, by first showing that 𝛽 ↦ 𝒢 𝛽

𝜔 is analytic via the integral representation, and then by
continuing analytically (A.13).

As a direct consequence of the proposition, the convolution of 𝒢 𝛽
𝜔 with any 𝐿2 (ℝ3)-function

is valid. Therefore, the unique solution exhibited in Proposition 3.3.1 can be represented as the
following lemma.

Corollary 3.3.5. Given 𝜔 ∈ ℂ ⧵ ℝ and 𝑓 ∈ 𝐿2 (ℝ3), the unique solution of (3.31) is 𝑢𝜔 = 𝒢 𝛽
𝜔 ∗ 𝑓.

3.3.1.2 Limiting absorption solution

Now that the fundamental solution of (3.33) is known for 𝜔 ∈ ℂ ⧵ ℝ, the following proposition
describes the behavior of 𝒢 𝛽

𝜔 when Im𝜔 tends to 0. Due to the branch cut of the square root, the
signs of Re𝜔 and Im𝜔 play an important role. For this reason, we restrict ourselves to the case
Re𝜔 > 0. Let us define for all 𝒙 = (𝑥, 𝑦 , 𝑧) ∈ ℝ3

𝑑𝛽(𝒙) ≔ |𝛽(𝜔)(𝑥2 + 𝑦2) + 𝑧2|1/2 . (3.37)

Remark 3.3.6. This function must be compared to the “elliptic” distance √|𝛽|(𝑥2 + 𝑦2) + 𝑧2 to
the origin which is equivalent to the euclidean distance ; we use the term “elliptic” because the
level set are ellipse. Obviously, 𝑑𝛽 is not a distance. Nevertheless, it can be viewed as it in the
hyperbolic system of coordinates ; notice that the level sets of 𝑑𝛽 are hyperbola. Recall that the
hyperbolic system of coordinates writes

√𝑥
2 + 𝑦2 =

𝜌 sinh 𝜃
|𝛽|1/2

, 𝑧 = 𝜌 cosh 𝜃
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with 𝜌 > 0 and 𝜃 ∈ (0, +∞), so that 𝑑𝛽(𝒙) = 𝜌. However, major difficulties appear with the
“hyperbolic” distance. Indeed, the hyperbolic system of coordinates is bijective from the cone
{𝑧 > √|𝛽|(𝑥2 + 𝑦2)} to ℝ+ ×ℝ2. In particular, the “hyperbolic” distance vanishes on the boundaries
of the cone and not only at the origin of the system of coordinates.

Proposition 3.3.7. Let 𝜔 ∈ (0, +∞) ⧵ {𝜔𝑝}. Then,

𝒢 𝛽
𝜔,±(𝒙) ≔ lim

𝜈→0+
𝒢 𝛽
𝜔±𝑖𝜈(𝒙)

exists for almost every 𝒙 ∈ ℝ3. Moreover, the convergence holds in 𝐿1𝑙𝑜𝑐 (ℝ
3) and there is the two

following cases:

• if 𝜔 > 𝜔𝑝, then

𝒢 𝛽
𝜔,±(𝒙) = 𝛽(𝜔)𝑒

±𝑖𝜔𝑑𝛽(𝒙)

4𝜋𝑑𝛽(𝒙)
,

• if 𝜔 ∈ (0, 𝜔𝑝), then

𝒢 𝛽
𝜔,±(𝒙) =

⎧
⎪

⎨
⎪
⎩

𝛽(𝜔)𝑒
±𝑖𝜔𝑑𝛽(𝒙)

4𝜋𝑑𝛽(𝒙)
if 𝒙 ∈ 𝐶𝛽𝑝 ≔ {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑧2 > |𝛽(𝜔)|(𝑥2 + 𝑦2)},

±𝛽(𝜔) 𝑒
−𝜔𝑑𝛽(𝒙)

4𝑖𝜋𝑑𝛽(𝒙)
if 𝒙 ∈ 𝐶𝛽𝑒 ≔ {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑧2 < |𝛽(𝜔)|(𝑥2 + 𝑦2)}.

(3.38)

Before proving this proposition, let us make some remarks. It is clear that the appearance of
different cases is due to the presence of the complex square root. In the first case, 𝜔 > 𝜔𝑝 and
𝛽(𝜔) > 0, so that we retrieve the classic outgoing (respectively, ingoing) fundamental solution
𝒢 𝛽
𝜔,+ (resp. 𝒢 𝛽

𝜔,−) of the scaled Helmholtz solution. In the second case, we observe first that the

solutions are not “causal” since they obviously do not vanish in the “non-causal” cone 𝐶𝛽𝑒 . The
outgoing and ingoing solutions decrease exponentially in 𝐶𝛽𝑒 (where “𝑒” stands for evanescent) as
𝑑𝛽(𝒙) increases, while a propagative behavior is observed in 𝐶𝛽𝑝 (where “𝑝” stands for propagative),
see Figure 3.2.

Proof. Until the end of the proof, we use 𝜌 = √𝑥2 + 𝑦2 and 𝑑±𝜈𝛽 (𝒙) = √𝛽(𝜔 ± 𝑖𝜈)𝜌2 + 𝑧2 for
𝜔 ∈ (0, +∞) ⧵ {𝜔𝑝} and 𝜈 > 0. The proof is divided in three parts. First, the pointwise limit

is computed. Next, we prove that 𝒢 𝛽
𝜔,± ∈ 𝐿1𝑙𝑜𝑐 (ℝ

3). Finally, the convergence in 𝐿1𝑙𝑜𝑐 (ℝ
3) is

established.

Step 1 : pointwise limit. If 𝛽(𝜔)𝜌2 + 𝑧2 > 0, then

𝑑±𝜈𝛽 (𝒙) −−−−−→
𝜈→0+

𝑑𝛽(𝒙).

This occurs when 𝜔 > 𝜔𝑝, or 𝜔 ∈ (0, 𝜔𝑝) and 𝒙 ∈ 𝐶𝛽𝑝 . Next if 𝛽(𝜔)𝜌2 + 𝑧2 < 0, i.e., 𝜔 ∈ (0, 𝜔𝑝) and

𝒙 ∈ 𝐶𝛽𝑒 , then the limit depends on the sign of

Im (𝛽(𝜔 ± 𝑖𝜈)𝜌2 + 𝑧2) = ±
2𝜌2𝜔2

𝑝𝜔𝜈

(𝜔2 + 𝜈2)2
. (3.39)

Then, using the definition of the complex square root,

𝑑±𝜈𝛽 (𝒙) −−−−−→
𝜈→0+

±𝑖𝑑𝛽(𝒙).

The incorporation of the above limits in (3.34) gives the pointwise limit almost everywhere.
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3.3. Transverse magnetic problem

Figure 3.2: The real part (on the left) and the imaginary part (on the right) of the fundamental
solution 𝒢 𝛽

𝜔,+ in the plane {𝑦 = 0}. The abscissa corresponds to the variable 𝑥 and the ordinate
to the variable 𝑧. We have chosen 𝜔 = 4 and 𝜔𝑝 = 4√2, such that 𝛽 = −1. Notice that the

fundamental solution is propagative in the upper and lower cones 𝐶𝛽𝑝 , and is evanescent in the

rest of the domain 𝐶𝛽𝑒 . Moreover, because the fundamental solution is singular, the colors near
the boundaries of 𝐶𝛽𝑝 and 𝐶𝛽𝑒 become saturated.

Step 2 : 𝒢 𝛽
𝜔,± ∈ 𝐿1𝑙𝑜𝑐 (ℝ

3). Next, the end of proof focuses on the case 𝜔 ∈ (0, 𝜔𝑝), where

𝛽(𝜔) = 1 −
𝜔2
𝑝

𝜔2 < 0, since the case 𝜔 > 𝜔𝑝 is analogous to the scaled Helmholtz equation. Let

𝑅 > 0 and the cylinder 𝐵𝑅 = {(𝑥, 𝑦 , 𝑧) ,max (|𝑧|, |𝛽|1/2𝜌) ≤ 𝑅}. We define 𝐾𝑝,𝑅 = 𝐶𝛽𝑝 ∩ 𝐵𝑅 and

𝐾𝑒,𝑅 = 𝐶𝛽𝑒 ∩ 𝐵𝑅, see Figure 3.3. Then, we have

∫
𝐾𝑝,𝑅

|𝒢 𝛽
𝜔,± (𝒙)| d𝒙 =

|𝛽|
4𝜋 ∫

2𝜋

𝜑=0
∫
𝑅

𝑧=−𝑅
∫
|𝑧|/|𝛽|1/2

𝜌=0

𝜌d𝜌

√𝑧2 − |𝛽|𝜌2
d𝑧 = 𝑅2

2
,

and

∫
𝐾𝑒,𝑅

|𝒢 𝛽
𝜔,± (𝒙)| d𝒙 ≤

|𝛽|
4𝜋 ∫

𝐾𝑒,𝑅

d𝒙
𝑑𝛽(𝒙)

= |𝛽| ∫
𝑅

𝑧=0
∫
𝑅/|𝛽|1/2

𝜌=𝑧

𝜌d𝜌

√|𝛽|𝜌2 − 𝑧2
d𝑧 = 𝜋𝑅2

4
.

This shows that 𝒢 𝛽
𝜔,± ∈ 𝐿1𝑙𝑜𝑐 (ℝ

3).

Step 3 : convergence in 𝐿1𝑙𝑜𝑐 (ℝ
3). We focus on the proof for 𝒢 𝛽

𝜔,+ since the proofs for 𝒢 𝛽
𝜔,+

and 𝒢 𝛽
𝜔,− are identical. It suffices to show the convergence on 𝐾𝑝,𝑅 and 𝐾𝑒,𝑅 for any 𝑅 > 0. First,

for all 𝒙 ∈ 𝐾𝑝,𝑅, we have

𝒢 𝛽
𝜔+𝑖𝜈(𝒙) − 𝒢 𝛽

𝜔,+(𝒙)

= 𝛽(𝜔 + 𝑖𝜈) 𝑒
𝑖𝜔𝑑𝜈𝛽(𝒙)

4𝜋𝑑𝜈𝛽(𝒙)
− 𝛽(𝜔) 𝑒

𝑖𝜔𝑑𝛽(𝒙)

4𝜋𝑑𝛽(𝒙)

=
𝛽(𝜔 + 𝑖𝜈)𝑒𝑖𝜔𝑑

𝜈
𝛽(𝒙)

4𝜋⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝐴)

( 1
𝑑𝜈𝛽(𝒙)

− 1
𝑑𝛽(𝒙)

) +
𝛽(𝜔 + 𝑖𝜈)𝑒𝑖𝜔𝑑

𝜈
𝛽(𝒙) − 𝛽(𝜔)𝑒𝑖𝜔𝑑𝛽(𝒙)

4𝜋𝑑𝛽(𝒙)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝐵)

.

The term denoted as (𝐵) is easily bounded by 1/𝑑𝛽(𝒙) ∈ 𝐿1𝑙𝑜𝑐 (ℝ
3), because the denominator is

uniformly bounded on 𝐾𝑝,𝑅. In the same way, the term in front of (𝐴) is also uniformly bounded
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on 𝐾𝑝,𝑅. Therefore, it remains to show that

1
𝑑𝜈𝛽(𝒙)

− 1
𝑑𝛽(𝒙)

𝐿1(𝐾𝑝,𝑅)
−−−−−−→
𝜈→0+

0.

An easy computation shows that

1
𝑑𝜈𝛽(𝒙)

− 1
𝑑𝛽(𝒙)

= − 1
𝑑𝛽(𝒙)

⎛
⎜
⎜
⎝

1 − 1

√
𝛽(𝜔+𝑖𝜈)𝜌2+𝑧2
𝛽(𝜔)𝜌2+𝑧2

⎞
⎟
⎟
⎠

= − 1
𝑑𝛽(𝒙)

⎛
⎜
⎜
⎝

1 − 1

√
1 + (𝛽(𝜔+𝑖𝜈)−𝛽(𝜔))𝜌2

𝛽(𝜔)𝜌2+𝑧2

⎞
⎟
⎟
⎠

(3.40)

Again, 1/𝑑𝛽(𝒙) ∈ 𝐿1𝑙𝑜𝑐 (ℝ
3), so it suffices to bound the last part in 𝐿∞-norm uniformly with respect

to 𝜈 small enough. However, it is not obvious because 𝛽(𝜔)𝜌2 + 𝑧2 goes to 0 near the boundary of
𝐶𝛽𝑝 , so that the ratio

(𝛽(𝜔 + 𝑖𝜈) − 𝛽(𝜔))𝜌2

𝛽(𝜔)𝜌2 + 𝑧2

is not uniformly bounded. As a consequence, following the approach in [22, Appendix D], we
shall decompose 𝐾𝑝,𝑅 = 𝐾 𝑟𝑒𝑔,𝜈

𝑝,𝑅 ∪ 𝐾 𝑠𝑖𝑛𝑔,𝜈
𝑝,𝑅 , with the definitions of 𝐾 𝑟𝑒𝑔,𝜈

𝑝,𝑅 and 𝐾 𝑠𝑖𝑛𝑔,𝜈
𝑝,𝑅 provided below.

Since 𝑠 ∈ ℂ ⧵ (−∞, −1] ↦ 1 − 1
√1+𝑠

is analytic in a neighborhood of 0, there are two positive
constants 𝐶1, 𝐶2 such that

|𝑠| ≤ 𝐶1 ⟹ |1 − 1
√1 + 𝑠

| ≤ 𝐶2|𝑠|. (3.41)

In the same way, for 𝜈 > 0 small enough, there is 𝐶𝛽 > 0 such that |𝛽(𝜔 + 𝑖𝜈) − 𝛽(𝜔)| ≤ 𝐶𝛽𝜈. Then
consider the following sets

𝐾 𝑟𝑒𝑔,𝜈
𝑝,𝑅 ≔ {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ (|𝛽| +

𝐶𝛽𝜈
𝐶1

) 𝜌2 ≤ 𝑧2 ≤ 𝑅} , (3.42)

𝐾 𝑠𝑖𝑛𝑔,𝜈
𝑝,𝑅 ≔ {(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ |

|𝛽|𝜌2 ≤ 𝑧2 ≤ 𝑅,

𝑧2 < (|𝛽| +
𝐶𝛽𝜈
𝐶1

) 𝜌2
} , (3.43)

see Figure 3.3. Notice that the set 𝐾 𝑟𝑒𝑔,𝜈
𝑝,𝑅 is designed in a such way that, for all 𝒙 ∈ 𝐾 𝑟𝑒𝑔,𝜈

𝑝,𝑅 and for
𝜈 > 0 small enough,

|
(𝛽(𝜔 + 𝑖𝜈) − 𝛽(𝜔))𝜌2

𝛽(𝜔)𝜌2 + 𝑧2
| ≤ (𝐶𝛽𝜈) (

𝐶1
𝐶𝛽𝜈

) = 𝐶1. (3.44)

Moreover, as 𝜈 goes to 0, 𝟙𝐾 𝑟𝑒𝑔,𝜈
𝑝,𝑅

converges almost everywhere to 𝟙𝐾𝑝,𝑅 . Then, for any 𝒙 ∈ 𝐾 𝑟𝑒𝑔,𝜈
𝑝,𝑅 ,

the combination of (3.40), (3.41) and (3.44) gives

| 1
𝑑𝜈𝛽(𝒙)

− 1
𝑑𝛽(𝒙)

| ≤
𝐶1𝐶2
𝑑𝛽(𝒙)

.

As a consequence, since the last inequality stands for 𝜈 > 0 small enough and (𝒢 𝛽
𝜔+𝑖𝜈 − 𝒢 𝛽

𝜔,+) 𝟙𝐾 𝑟𝑒𝑔,𝜈
𝑝,𝑅

converges to 0 almost everywhere, then by Lebesgue’s dominated convergence theorem, we have
that

𝒢 𝛽
𝜔+𝑖𝜈𝟙𝐾 𝑟𝑒𝑔,𝜈

𝑝,𝑅

𝐿1(𝐾𝑝,𝑅)
−−−−−−→
𝜈→0+

𝒢 𝛽
𝜔,+. (3.45)
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𝜌

𝑧 |𝑧| = |𝛽|1/2𝜌

𝑧 = 𝑅

𝐶𝛽𝑝 𝐶𝛽𝑒
𝐾𝑝,𝑅 𝐾𝑒,𝑅

𝜌

𝑧 |𝑧| = |𝛽|1/2𝜌

𝑧 = 𝑅

𝐾 𝑟𝑒𝑔,𝜈
𝑝,𝑅 𝐾 𝑠𝑖𝑛𝑔,𝜈

𝑝,𝑅

Figure 3.3: The domains 𝐶𝛽𝑝 , 𝐶
𝛽
𝑒 , 𝐾𝑝,𝑅, 𝐾𝑒,𝑅 on the left and 𝐾 𝑟𝑒𝑔,𝜈

𝑝,𝑅 , 𝐾 𝑠𝑖𝑛𝑔,𝜈
𝑝,𝑅 on the right.

The final step consists in demonstrating that 𝒢 𝛽
𝜔+𝑖𝜈𝟙𝐾 𝑠𝑖𝑛𝑔,𝜈

𝑝,𝑅
converges to 0 in 𝐿1-norm. Using (3.39),

we have

| 1
𝑑𝜈𝛽(𝒙)

| ≤ 1

|Im (𝛽(𝜔 ± 𝑖𝜈)𝜌2 + 𝑧2)|1/2
≲ 1

𝜌√𝜈
.

On the other hand, thanks to the definition (3.43) of 𝐾 𝑠𝑖𝑛𝑔,𝜈
𝑝,𝑅 , it follows that 𝜌 ≳

𝑑𝛽(𝒙)
√𝜈

for all

𝒙 ∈ 𝐾 𝑠𝑖𝑛𝑔,𝜈
𝑝,𝑅 . This leads to the inequality

∫ |𝒢 𝛽
𝜔+𝑖𝜈| 𝟙𝐾 𝑠𝑖𝑛𝑔,𝜈

𝑝,𝑅
≲ ∫ | 1

𝑑𝛽
| 𝟙𝐾 𝑠𝑖𝑛𝑔,𝜈

𝑝,𝑅
−−−−−→
𝜈→0+

0. (3.46)

Finally, (3.45) and (3.46) ensures that 𝒢 𝛽
𝜔+𝑖𝜈 converges to 𝒢 𝛽

𝜔,+ in 𝐿1(𝐾𝑝,𝑅). A similar argument
gives the same conclusion in 𝐿1(𝐾𝑒,𝑅), and the proof is concluded.

Let us conclude on the fundamental solution by the following lemma.

Lemma 3.3.8. For 𝜔 ∈ (0, 𝜔𝑝), we have ∇𝒢
𝛽
𝜔,± ∈ 𝐿1𝑙𝑜𝑐 (𝐶

𝛽
𝑝 ∪ 𝐶𝛽𝑒 )

3
, and

∇𝒢 𝛽
𝜔,±(𝒙) =

⎧
⎪

⎨
⎪
⎩

(±𝑖𝜔 − 1
𝑑𝛽(𝒙)

)𝒢 𝛽
𝜔,±(𝒙)

𝛽(𝜔)�−1𝒙
𝑑𝛽(𝒙)

, if 𝒙 ∈ 𝐶𝛽𝑝 ,

(𝜔 − 1
𝑑𝛽(𝒙)

)𝒢 𝛽
𝜔,±(𝒙)

𝛽(𝜔)�−1𝒙
𝑑𝛽(𝒙)

, if 𝒙 ∈ 𝐶𝛽𝑒 .
(3.47)

On the other hand, ∇𝒢 𝛽
𝜔,± ∉ 𝐿1𝑙𝑜𝑐 (ℝ

3)3.

Proof. The computation of the gradient is obvious, and clearly shows that ∇𝒢 𝛽
𝜔,± ∈ 𝐿1𝑙𝑜𝑐 (𝐶

𝛽
𝑝 ∪ 𝐶𝛽𝑒 )

3
.

On the other hand, the computation of the 𝐿1-norm on 𝐾𝑝,𝑅 like in the second step of the proof
of Proposition 3.3.7 leads to estimate the integral

∫
|𝑧|

𝜌=0

𝜌
𝑧2 − 𝜌2

d𝜌 = ∞.
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Now that we have a suitable fundamental solution for 𝜔 ∈ (0, 𝜔𝑝), let us state the following
results about the existence of strong and weak solutions. Since the proofs follows exactly [22],
we only transpose the result in the 3D case.

Proposition 3.3.9. Let 𝜔 ∈ (0, 𝜔𝑝), and 𝑓 ∈ 𝒞 2
0 (ℝ3). Then, 𝑢+𝜔 ≔ 𝒢 𝛽

𝜔,+ ∗ 𝑓 ∈ 𝒞 2 (ℝ3) and is a
strong solution of (3.29).

This result can be extended by density to functions in some weighted Sobolev spaces. Let us
define the following spaces with their norms:

𝐿2⟂,− (ℝ3) ≔ {𝑢 ∈ 𝐿2𝑙𝑜𝑐 (ℝ
3) ∶ ‖𝑢‖⟂,− < ∞}

𝐻 1
⟂,+ (ℝ3) ≔ {𝑢 ∈ 𝐿2𝑙𝑜𝑐 (ℝ

3) ∶ ∇𝑢 ∈ (𝐿2𝑙𝑜𝑐 (ℝ
3))

3 , ‖𝑢‖𝐻 1
⟂,+

< ∞} ,

‖𝑢‖2⟂,− = ∫
ℝ3

|𝑢|2(1 + 𝑧2)d𝒙, ‖𝑢‖2𝐻 1
⟂,+

= ∫
ℝ3

(|𝑢|2 + |∇𝑢|2) 1
1 + 𝑧2

d𝒙.

Notice that 𝐿2⟂,− (ℝ3) = 𝐿2𝑤 (ℝ; 𝐿2 (ℝ2))where 𝐿2𝑤 is the Lebesgue space weighted by 𝑤(𝒙) = 1+𝑧2.
Then, we have the following result.

Proposition 3.3.10. Given 𝑓 ∈ 𝐿2⟂,− (ℝ3), the function 𝑢+𝜔 = 𝒢 𝛽
𝜔,+ ∗ 𝑓 ∈ 𝐻 1

⟂,+ (ℝ3) is well-defined.
Moreover, 𝑢+𝜔 solves the problem (3.29).

The optimal result can be found in [22]. The main idea of the proof consist in expressing
the norms involved with the partial Fourier transform along 𝑥, 𝑦-directions via the Plancherel
Theorem:

‖𝑢‖2⟂,− = ∫
ℝ3

|ℱ𝑥,𝑦[𝑢](𝑘𝑥, 𝑘𝑦, 𝑧)|
2
(1 + 𝑧2)d𝑘𝑥d𝑘𝑦d𝑧,

‖𝑢‖2𝐻 1
⟂,+

= ∫
ℝ3

((1 + 𝑘2𝑥 + 𝑘2𝑦) |ℱ𝑥,𝑦[𝑢](𝑘𝑥, 𝑘𝑦, 𝑧)|
2
+ |𝜕𝑧ℱ𝑥,𝑦[𝑢](𝑘𝑥, 𝑘𝑦, 𝑧)|

2
) 1
1 + 𝑧2

d𝑘𝑥d𝑘𝑦d𝑧.

Then, defining ℱ𝑥,𝑦 [𝒢
𝛽
𝜔,+] as the limit of (3.35) when Im𝜔 → 0+, we have

ℱ𝑥,𝑦 [𝑢+𝜔] = ℱ𝑥,𝑦 [𝒢
𝛽
𝜔,+] ∗𝑧 ℱ𝑥,𝑦 [𝑓] ,

and the estimation of 𝑢+𝜔 with the norms as above is easy.

3.3.1.3 Radiation condition

Fourier’s radiation condition It has been seen in § 3.3.1.1 that the application of the partial
Fourier transform in the 𝑥, 𝑦-directions leads to the following 1D Helmholtz equation:

−𝜕2𝑧ℱ𝑥,𝑦[𝑢] − (𝜔2 − 𝛽(𝜔)−1|𝐤‖|2)ℱ𝑥,𝑦[𝑢] = ℱ𝑥,𝑦[𝑓 ], a.e. 𝒌‖ = (𝑘𝑥, 𝑘𝑦) ∈ ℝ2. (3.48)

Recall that 𝛽(𝜔) < 0 for 𝜔 ∈ (0, 𝜔𝑝). Given 𝒌‖ ∈ ℝ2, if ℱ𝑥,𝑦[𝑢] satisfies the following outgoing
radiation condition

|𝜕|𝑧|ℱ𝑥,𝑦[𝑢] − 𝑖√𝜔
2 − 𝛽(𝜔)−1|𝐤‖|2ℱ𝑥,𝑦[𝑢]| −−−−−−→

|𝑧|→+∞
0, a.e. 𝒌‖ ∈ ℝ2, (3.49)

then the solution ℱ𝑥,𝑦[𝑢] of (3.48) is unique. On the other hand, the ℱ𝑥,𝑦[𝑢] must exist if we
want a such condition. Then, a sufficient condition to guarantee this consists in imposing some
regularity on the following mapping:

[(𝑥, 𝑦) ∈ ℝ2 ↦ 𝑢(𝑥, 𝑦 , 𝑧)] ∈ 𝐿2 (ℝ2) , a.e. 𝑧 ∈ ℝ. (3.50)
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Definition 3.3.11 (Outgoing Fourier Sommerfeld condition, [22] ). A function 𝑢 ∈ 𝐻 1
𝑙𝑜𝑐 (ℝ

3)
satisfies the outgoing Fourier radiation condition if it satisfies (3.49) and (3.50).

Let us make few comments on this condition. Although 𝒢 𝛽
𝜔,+(⋅, ⋅, 𝑧) ∉ 𝐿2 (ℝ2) because of it

singular behavior near the boundary of the cones 𝐶𝛽𝑝 and 𝐶𝛽𝑒 , it is compatible with the radiation
condition. Using (3.35) and letting Im𝜔 tend to 0+, its partial Fourier transform in 𝒮 ′ (ℝ2) reads

ℱ𝑥,𝑦 [𝒢
𝛽
𝜔,+] (𝑘𝑥, 𝑘𝑦, 𝑧) = − 𝑒𝑖√𝜔

2−𝛽(𝜔)(𝑘2𝑥+𝑘2𝑦 )|𝑧|

2𝑖√𝜔
2 − 𝛽(𝜔)(𝑘2𝑥 + 𝑘2𝑦 )

.

Hence, it trivially2 satisfies (3.49). Together with Proposition 3.3.10, this leads to the following
theorem.

Theorem 3.3.12. Let 𝜔 ∈ (0, 𝜔𝑝). For all 𝑓 ∈ 𝐿2⟂,− (ℝ3), the function 𝑢+𝜔 = 𝒢 𝛽
𝜔,+ ∗ 𝑓 ∈ 𝐻 1

⟂,+ (ℝ3)
is the unique solution of the problem (3.29) which satisfies the Outgoing Fourier Sommerfeld condi-
tion (3.3.11).

Towards an alternative radiation condition The usual radiation condition (in a strong form)
for the Helmholtz equation is reads

𝑟 |𝜕𝑟𝑢 − 𝑖𝜔𝑢| −−−−−→
𝑟→+∞

0

where 𝑟 = |𝒙|. This condition ensures the uniqueness of the solution, via the Rellich’s Lemma,
see e.g., [45, Lemma 9.8]. Obviously, the fundamental solution (A.12) of the classic Helmholtz
equation also respects the condition above.

The objective of this paragraph is to give some ideas on how to construct a such radiation
condition for the hyperbolic equation (3.29). More precisely, we want to design a condition with
the following pattern:

𝑅(𝒙) |𝕥(𝒙)∇𝑢(𝒙) ⋅ 𝒏(𝒙) − 𝑖𝜔𝑔(𝒙)𝑢(𝒙)| −−−−−→
𝑟→+∞

0

where 𝕥(𝒙) is a 3 × 3 matrix, 𝒏(𝒙) the normal to some surface, and 𝑅(𝒙), 𝑔(𝒙) are two functions.
For example, in the case of the classic Helmholtz equation, we would have 𝕥 = 𝕀3 and 𝒏(𝒙) = 𝒙/|𝒙|,
and 𝑔(𝒙) = 1. This condition is expected to be compatible with the fundamental solution (3.38).
Indeed, we can rewrite its derivative as

∇𝒢 𝛽
𝜔,±(𝒙) = −𝒢 𝛽

𝜔,±
𝛽�𝒙

𝑑𝛽(𝒙)2
± 𝑖𝜔𝒢 𝛽

𝜔,±(𝒙) ×

⎧
⎪

⎨
⎪
⎩

𝛽(𝜔)�−1𝒙
𝑑𝛽(𝒙)

, if 𝒙 ∈ 𝐶𝛽𝑝 ,

∓𝑖
𝛽(𝜔)�−1𝒙
𝑑𝛽(𝒙)

, if 𝒙 ∈ 𝐶𝛽𝑒 .

Therefore, in the view of this expression, if we want to select the outgoing solution, it seems
natural to set

𝕥(𝒙) = 𝛽−1� = (
𝛽−1 0 0
0 𝛽−1 0
0 0 1

) , and 𝑔(𝒙) =
⎧⎪
⎨⎪
⎩

𝒙 ⋅ 𝒏(𝒙)
𝑑𝛽(𝒙)

, if 𝒙 ∈ 𝐶𝛽𝑝 ,

−𝑖
𝒙 ⋅ 𝒏(𝒙)
𝑑𝛽(𝒙)

, if 𝒙 ∈ 𝐶𝛽𝑒 ,

2Actually 𝜕|𝑧|ℱ𝑥,𝑦 [𝒢
𝛽
𝜔,+] = 𝑖√𝜔2 − 𝛽(𝜔)−1|𝐤‖|2ℱ𝑥,𝑦 [𝒢

𝛽
𝜔,+].
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with 𝑑𝛽(𝒙) = |𝑧2 − |𝛽|𝜌2|1/2, 𝜌 = √𝑥2 + 𝑦2, so that a simple computation gives

𝛽−1�∇𝒢 𝛽
𝜔,+(𝒙) ⋅ 𝒏(𝒙) − 𝑖𝜔𝑔(𝒙)𝒢 𝛽

𝜔,+(𝒙) = −𝒢 𝛽
𝜔,+(𝒙)

𝒙 ⋅ 𝒏(𝒙)
𝑑𝛽(𝒙)2

.

Then, given a direction 𝒆 ∈ ℝ3, |𝒆| = 1, not parallel to the boundary of the cones 𝐶𝛽𝑝 , 𝐶
𝛽
𝑒 , we

obviously have

|𝒙| |𝛽−1�∇𝒢 𝛽
𝜔,+(|𝒙|𝒆) ⋅ 𝒏(|𝒙|𝒆) − 𝑖𝜔𝑔(|𝒙|𝒆)𝒢 𝛽

𝜔,+(|𝒙|𝒆)| ≤
1

4𝜋|𝒙|𝑑𝛽(𝒆)3
−−−−−−→
|𝒙|→+∞

0. (3.51)

On the other hand, this conditions is not satisfied by 𝒢 𝛽
𝜔,−.

The Rellich’s lemma ensures the uniqueness of the Helmholtz via the control of the limit of
‖𝑢‖𝐿2(𝑆𝑅) as 𝑅 → +∞ where 𝑆𝑅 is the sphere of radius R. Unfortunately, the quantity ‖𝒢 𝛽

𝜔,+‖𝐿2(𝑆𝑅)
is

not defined since 𝒢 𝛽
𝜔,+ is not 𝐿2-integrable on the sphere, for the exact same reason as ∇𝒢 𝛽

𝜔,± ∉
𝐿1𝑙𝑜𝑐 (ℝ

3)3, see Lemma 3.3.8. Therefore, instead of a simple 𝐿2-norm on the sphere 𝑆𝑅, we will
consider a weighted 𝐿2-norm on the boundary 𝜕Ω of some bounded domain Ω ⊂ ℝ3.

Let 𝑢 ∈ 𝒞 2 (ℝ3) be a solution of the equation (3.29) with 𝑓 = 0 and 𝑊(𝒙) a measurable real
weight function. Then, using the divergence form (3.32) of the equation, we have

0 = − Im∫
Ω
div (𝛽−1�∇𝑢) 𝑢 𝑊 (𝒙)d𝒙

= Im∫
Ω
𝑢𝛽−1�∇𝑢 ⋅ ∇𝑊 (𝒙)d𝒙 − Im∫

𝜕Ω
𝑢𝛽−1�∇𝑢 ⋅ 𝒏(𝒙) 𝑊 (𝒙)ds(𝒙).

Notice the appearance of Im (𝑢𝛽−1�∇𝑢) which must be compared with the vector Im (𝑢∇𝑢). There-
fore, following the idea of dominating the weighted 𝐿2-norm on 𝜕Ω, the Cauchy-Schwarz inequal-
ity leads to

𝜔 ∫
𝜕Ω

|𝑢|2|𝑔(𝒙)|𝑊 (𝒙)ds(𝒙)

≤ |Im∫
𝜕Ω

𝑢 (𝛽−1�∇𝑢 ⋅ 𝒏(𝒙) − 𝑖𝜔𝑔(𝒙)𝑢) 𝑊 (𝒙)ds(𝒙) − Im∫
Ω
𝑢𝛽−1�∇𝑢 ⋅ ∇𝑊 (𝒙)d𝒙|

≤ (∫
𝜕Ω

|𝑢|2|𝑔(𝒙)|𝑊 (𝒙)ds(𝒙))
1/2

(∫
𝜕Ω

|𝛽−1�∇𝑢 ⋅ 𝒏(𝒙) − 𝑖𝜔𝑔(𝒙)𝑢|2
𝑊(𝒙)
|𝑔(𝒙)|

ds(𝒙))
1/2

+ |∫
Ω
𝑢𝛽−1�∇𝑢 ⋅ ∇𝑊 (𝒙)d𝒙| .

In order to have an idea of the weight, let us set 𝑊(𝒙) = (
𝑑𝛽(𝒙)
|𝒙| )

𝜇
with 𝜇 ∈ ℝ some exponent to

determine, and Ω = 𝐾𝑝,𝑅 ∪ 𝐾𝑒,𝑅. Notice that𝑊 is defined such that it only depends on 𝒙/|𝒙|. Then,
following computations like in the second step of the proof of Proposition 3.3.7, and focusing
only on the problematic terms, we have

∫
𝜕Ω

|𝒢 𝛽
𝜔,+|

2
|𝑔(𝒙)|𝑊 (𝒙)ds(𝒙) ≈ ∫

𝜕Ω
(𝑑𝛽(𝒙))

𝜇−3
ds(𝒙) < ∞,

∫
𝜕Ω

|𝛽−1�∇𝒢 𝛽
𝜔,+ ⋅ 𝒏(𝒙) − 𝑖𝜔𝑔(𝒙)𝒢 𝛽

𝜔,+|
2 𝑊(𝒙)
|𝑔(𝒙)|

ds(𝒙) ≈ ∫
𝜕Ω

(𝑑𝛽(𝒙))
𝜇−5

ds(𝒙) < ∞

if 𝜇 > 1 for the first integral and 𝜇 > 3 for the second.
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To end this paragraph, the ideas above are premises to write a condition radiation without the
use of the partial Fourier transform. However, it was not possible to develop further these ideas
because two quantities must be estimated for a regular non-vanishing solution 𝑢 of the equation
with a vanishing source term:

• the volume integral ∫Ω 𝑢𝛽−1�∇𝑢 ⋅ ∇𝑊 (𝒙)d𝒙;

• the growth of the surface integral ∫𝜕Ω |𝑢|2|𝑔(𝒙)|𝑊 (𝒙)ds(𝒙).

In principle, once the behavior of both these integrals is known, a proof of the uniqueness of the
solution following the same steps as the classic Helmholtz equation could be written.

The two next sections are devoted to the derivation of the well-posedness result for the
reduced TM problem (3.22). The strategy is the same as the TE problem : we first establish the
existence of classic solutions, then a radiation condition is discussed.

3.3.2 Existence of solutions

The fundamental solution of the hyperbolic problem (3.12) cannot be computed like int eh case of
the Maxwell system in vacuum because of the presence of the tensor �. On the other hand, in
spite of its complexity due to the high number of differential operator, the reduced formalism
introduced in section 3.1.4 allows us to compute the solution. We look for a pair of distributions
(𝔼‖, 𝔹̃⟂) ∈ 𝓢′ × 𝓢̃′ with 𝓢′ = 𝒮 ′ (ℝ3)3×3 × 𝒮 ′ (ℝ3)3×2 and 𝓢̃′ = 𝒮 ′ (ℝ3)2×3 × 𝒮 ′ (ℝ3)2×2 such
that

|
𝑖𝜔�𝔼‖ + 𝒄𝒖𝒓𝒍⟂ 𝔹̃⟂ = 𝕛‖,

−𝑖𝜔𝔹̃⟂ + 𝐜𝐮𝐫𝐥 𝔼‖ = 𝕞̃⟂,
(3.52)

where 𝕛‖ = (𝛿0𝕀3, 03×2) and 𝕞̃⟂ = (02×3, 𝛿0𝕀2). In the view of the one-unknown equation (3.23)

and identity (3.15), the operator Δ𝛽 = 𝛽−1(𝜕2𝑥 + 𝜕2𝑦 ) + 𝜕2𝑧 with 𝛽(𝜔) = 1 −
𝜔2
𝑝

𝜔2 plays a capital role in
the resolution of this problem. The following proposition illustrates this fact.

Proposition 3.3.13. For 𝜔 ∈ ℂ⧵ℝ, the fundamental solution of the TM problem (3.52) is decomposed
in two parts

𝔼‖ = 𝔼𝑟𝑒𝑔
‖ + 𝔼𝑠𝑖𝑛𝑔

‖ , 𝔹̃⟂ = 𝔹̃𝑟𝑒𝑔
⟂ + 𝔹̃𝑠𝑖𝑛𝑔

⟂ ,

with

𝔼𝑟𝑒𝑔
‖ = (𝑖𝜔𝒢 𝛽

𝜔�−1 − 1
𝑖𝜔𝛽

Hess𝒢 𝛽
𝜔 , �−1 𝒄𝒖𝒓𝒍⟂ (𝒢

𝛽
𝜔 𝕀2)) , 𝔹̃𝑟𝑒𝑔

⟂ = (𝐜𝐮𝐫𝐥 (𝒢 𝛽
𝜔�−1) , −𝑖𝜔𝒢 𝛽

𝜔 𝕀2) ,

and

𝔼𝑠𝑖𝑛𝑔
‖ = (𝑖𝜔

𝛽
𝒄𝒖𝒓𝒍⟂ curl⟂ ((𝒢

𝛽
𝜔 ∗ 𝒢 1𝐷

𝜔 + 𝜔2𝒢 𝛽
𝜔) 𝕀3) ,

1
𝛽
𝒄𝒖𝒓𝒍⟂ div⟂ 𝜕𝑧 (𝒢

𝛽
𝜔 ∗ 𝒢 1𝐷

𝜔 𝕀2)) ,

𝔹̃𝑠𝑖𝑛𝑔
⟂ = (1

𝛽
∇̃ curl⟂ 𝜕𝑧 (𝒢

𝛽
𝜔 ∗ 𝒢 1𝐷

𝜔 �−1) , 𝑖𝜔
𝛽
∇̃ div⟂ (𝒢

𝛽
𝜔 ∗ 𝒢 1𝐷

𝜔 𝕀2)) ,

where 𝒢 1𝐷
𝜔 = 𝛿0(𝑥, 𝑦) ⊗ 𝒢 1𝐷

𝜔 (𝑧) and 𝒢 1𝐷
𝜔 (𝑧) = −𝛾 𝑒

𝛾 𝑖𝜔|𝑥|

2𝑖𝜔 , 𝛾 = sign Im𝜔.
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Proof. Using identity (3.15) in the one-unknown equation (3.23) yields

−𝚫𝛽𝔹̃⟂ − 𝜔2𝔹̃⟂ = 𝐜𝐮𝐫𝐥(�−1𝕛‖) − 𝑖𝜔𝕞̃⟂ − 𝛽−1 ∇̃ div⟂ 𝔹̃⟂.

Similarly to the proof of proposition 3.2.1, div⟂ 𝔹̃⟂ solves this Helmholtz equation:

−𝜕2𝑧 div⟂ 𝔹̃⟂ − 𝜔2 div⟂ 𝔹̃⟂ = −𝜕𝑧 curl⟂(�−1𝕛‖) − 𝑖𝜔 div⟂ 𝕞̃⟂.

Therefore, for 𝜔 ∈ ℂ ⧵ ℝ, the unique solution to this equation is

div⟂ 𝔹̃⟂ = 𝒢 1𝐷
𝜔 ∗ (−𝜕𝑧 curl⟂(�−1𝕛‖) − 𝑖𝜔 div⟂ 𝕞̃⟂)

= (−𝜕𝑧 curl⟂ (𝒢 1𝐷
𝜔 �−1) , −𝑖𝜔 div⟂ (𝒢 1𝐷

𝜔 𝕀2)) ,

where𝒢 1𝐷
𝜔 = 𝛿0(𝑥, 𝑦)⊗𝒢 1𝐷

𝜔 (𝑧) and𝒢 1𝐷
𝜔 is the fundamental solution of the 1DHelmholtz equation,

see Lemma A.3.1. Thanks to the Proposition 3.3.2, we obtain

𝔹̃⟂ = 𝒢 𝛽
𝜔 ∗ (𝐜𝐮𝐫𝐥(�−1𝕛‖) − 𝑖𝜔𝕞̃⟂ − 𝛽−1 ∇̃ div⟂ 𝔹̃⟂)

= (𝐜𝐮𝐫𝐥 (𝒢 𝛽
𝜔�−1) + 1

𝛽
∇̃ curl⟂ 𝜕𝑧 (𝒢

𝛽
𝜔 ∗ 𝒢 1𝐷

𝜔 �−1) , −𝑖𝜔𝒢 𝛽
𝜔 𝕀2 +

𝑖𝜔
𝛽
∇̃ div⟂ (𝒢

𝛽
𝜔 ∗ 𝒢 1𝐷

𝜔 𝕀2))

Due to the structure of �, we have �−1 𝒄𝒖𝒓𝒍⟂ 𝑓 = 𝒄𝒖𝒓𝒍⟂ 𝑓 and �−1 𝒄𝒖𝒓𝒍⟂ ∇̃ 𝑓 = 𝒄𝒖𝒓𝒍⟂ ∇̃ 𝑓. Finally,
using identity (A.6), Proposition 3.3.2, the identity 𝒄𝒖𝒓𝒍⟂ ∇̃ 𝑓 = − 𝒄𝒖𝒓𝒍⟂ 𝜕𝑧𝑓, it yields

𝔼‖ =
�−1

𝑖𝜔
(𝕛‖ − 𝒄𝒖𝒓𝒍⟂ 𝔹̃⟂)

= (𝑖𝜔𝒢 𝛽
𝜔�−1 − 1

𝑖𝜔𝛽
Hess𝒢 𝛽

𝜔 + 𝑖𝜔
𝛽
𝒄𝒖𝒓𝒍⟂ curl⟂ ((𝒢

𝛽
𝜔 ∗ 𝒢 1𝐷

𝜔 + 𝜔2𝒢 𝛽
𝜔) 𝕀3) ,

�−1 𝒄𝒖𝒓𝒍⟂ (𝒢
𝛽
𝜔 𝕀2) +

1
𝛽
𝒄𝒖𝒓𝒍⟂ div⟂ 𝜕𝑧 (𝒢

𝛽
𝜔 ∗ 𝒢 1𝐷

𝜔 𝕀2)) .

Finally, the following proposition gives an integral representation of the solution to the
hyperbolic problem. We do not give the proof, since it is the same as the elliptic case, see
Proposition 3.2.3

Proposition 3.3.14. For 𝜔 ∈ ℂ ⧵ ℝ, given 𝒋‖ ∈ 𝑯 (curl⟂ 0; ℝ3) ∩ 𝑯 (div; ℝ3), 𝐦̃⟂ ∈ 𝐇̃ (div⟂ 0; ℝ3) ∩
𝐇̃ (𝒄𝒖𝒓𝒍⟂; ℝ3), the unique solution of the TM problem (3.22) is

𝐄‖ = 𝔼𝑟𝑒𝑔
‖ ∗ (

𝒋‖
𝐦̃⟂

) = 𝒢 𝛽
𝜔 ∗ (𝑖𝜔�−1𝒋‖ + �−1 𝒄𝒖𝒓𝒍⟂ 𝐦̃⟂) −

1
𝑖𝜔𝛽

∇𝒢 𝛽
𝜔 ∗ div 𝒋‖,

𝑩̃⟂ = 𝔹̃𝑟𝑒𝑔
⟂ ∗ (

𝒋‖
𝐦̃⟂

) = 𝒢 𝛽
𝜔 ∗ (𝐜𝐮𝐫𝐥 (�−1𝒋‖) − 𝑖𝜔𝐦̃⟂) .

In order to prove the existence of classic solutions for 𝜔 ∈ (0, 𝜔𝑝), we would pass to the limit

the expression of (𝐄‖, 𝑩̃⟂) given in the previous proposition. However, since ∇𝒢 𝛽
𝜔,+ ∉ (𝐿1 (ℝ3))3,

as it has been stated in Lemma 3.3.8, we need to impose more regularity on 𝒋‖ specifically.

Proposition 3.3.15. Let 𝜔 ∈ (0, 𝜔𝑝), 𝒋‖ ∈ 𝑯 (curl⟂ 0; ℝ3) ∩ (𝒞 3 (ℝ3))3, 𝐦̃⟂ ∈ 𝐇̃ (div⟂ 0; ℝ3) ∩

(𝒞 2 (ℝ3))2. Then,

𝑬‖ = 𝒢 𝛽
𝜔,+ ∗ (𝑖𝜔�−1𝒋‖ + �−1 𝒄𝒖𝒓𝒍⟂ 𝐦̃⟂ − 1

𝑖𝜔𝛽
∇ div 𝒋‖) , 𝐁̃⟂ = 𝒢 𝛽

𝜔,+ ∗ (𝐜𝐮𝐫𝐥 (�−1𝒋‖) − 𝑖𝜔𝐦̃⟂)

are such that 𝑬‖ ∈ (𝒞 1 (ℝ3))3, 𝐁̃⟂ ∈ (𝒞 1 (ℝ3))2 and solve the TM problem (3.22) in a strong sense.
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3.3.3 Fourier Silver-Müller radiation condition

Like the TE problem, the uniqueness of the reduced TM is ensured by a radiation condition. The
radiation condition (3.3.11) of the scalar problem associated to the TM problem is written with
the partial Fourier in the 𝑥, 𝑦-direction. Therefore, it is natural to extend this condition to the TM
problem within this framework.

Firstly, like radiation condition (3.3.11), we need the existence of the partial Fourier transform
of 𝑬‖ and 𝐁̃⟂:

|
[(𝑥, 𝑦) ∈ ℝ2 ↦ 𝑬‖(𝑥, 𝑦 , 𝑧)] ∈ (𝐿2(ℝ2))3 , a.e. 𝑧 ∈ ℝ,

[(𝑥, 𝑦) ∈ ℝ2 ↦ 𝐁̃⟂(𝑥, 𝑦 , 𝑧)] ∈ (𝐿2(ℝ2))2 , a.e. 𝑧 ∈ ℝ.
(3.53)

Next, given (𝑘𝑥, 𝑘𝑦) ∈ ℝ2, we impose the decrease of some combination of ̂𝑬‖ = ℱ𝑥,𝑦 [𝑬‖] and
̂̃𝐁⟂ = ℱ𝑥,𝑦 [𝐁̃⟂] when 𝑧 → ±∞:

|
|𝐸̂‖,𝑦 sign(𝑧) + 𝑎𝜔(𝑘𝑥, 𝑘𝑦)𝐵̂⟂,𝑥| −−−−−→

|𝑧|→∞
0, a.e. (𝑘𝑥, 𝑘𝑦) ∈ ℝ2,

|𝐸̂‖,𝑥 sign(𝑧) − 𝑎𝜔(𝑘𝑥, 𝑘𝑦)𝐵̂⟂,𝑦| −−−−−→
|𝑧|→∞

0, a.e. (𝑘𝑥, 𝑘𝑦) ∈ ℝ2,
(3.54)

with 𝑎𝜔(𝑘𝑥, 𝑘𝑦) = √
1 −

|𝑘𝑥|2+|𝑘𝑦|2

𝜔2𝛽(𝜔) .

Remark 3.3.16. The last condition can be written within the vector formalism, with 𝑩⟂ = (̂̃𝐁⟂, 0):

| ̂𝑬‖ ×
𝑧
|𝑧|
𝒆𝑧 + 𝑎𝜔(𝑘𝑥, 𝑘𝑦)𝑩⟂| −−−−−→

|𝑧|→∞
0, a.e. (𝑘𝑥, 𝑘𝑦) ∈ ℝ2.

Definition 3.3.17 (outgoing Fourier Silver-Müller condition). A pair of vector fields 𝑬‖ ∈
𝑯𝑙𝑜𝑐 (curl⟂ 0; ℝ3) ∩ (𝒞 1 (ℝ3))3 and 𝐁̃⟂ ∈ 𝐇𝑙𝑜𝑐 (div⟂ 0; ℝ3) ∩ (𝒞 1 (ℝ3))2 satisfies the outgoing
Fourier Silver-Müller condition if it satisfies (3.53) and (3.54).

These considerations lead to the following theorem.

Theorem3.3.18. Let𝜔 ∈ (0, 𝜔𝑝). If 𝑬‖ ∈ 𝑯𝑙𝑜𝑐 (curl⟂ 0; ℝ3)∩(𝒞 1 (ℝ3))3 and 𝐁̃⟂ ∈ 𝐇̃𝑙𝑜𝑐 (div⟂ 0; ℝ3)∩

(𝒞 1 (ℝ3))2 solve the homogeneous TM problem (3.22) and satisfies the condition (3.3.17), then 𝑬‖ = 0
and 𝐁̃⟂ = 0.

Proof. Using (3.15) and (3.23), 𝐁̃⟂ solves

−𝚫𝛽𝐁̃⟂ − 𝜔2𝐁̃⟂ = 0.

Then, the application of the partial Fourier transform in the 𝑥, 𝑦-direction leads to the following
1D Helmholtz equation along the 𝑧-direction:

−𝜕2𝑧
̂̃𝐁⟂ − (𝜔 𝑎𝜔(𝑘𝑥, 𝑘𝑦))

2 ̂̃𝐁⟂ = 0, with 𝑎𝜔(𝑘𝑥, 𝑘𝑦) =
√
1 −

|𝑘𝑥|2 + |𝑘𝑦|2

𝜔2𝛽(𝜔)
, (𝑘𝑥, 𝑘𝑦) ∈ ℝ2.

Then, there are two vectors 𝐁̃+, 𝐁̃− ∈ ℝ2 such that ̂̃𝐁⟂ = 𝐁̃+𝑒𝑖𝜔 𝑎𝜔(𝑘𝑥,𝑘𝑦)𝑧 + 𝐁̃−𝑒−𝑖𝜔 𝑎𝜔(𝑘𝑥,𝑘𝑦)𝑧. On the
other hand, applying the partial Fourier transform to 𝒄𝒖𝒓𝒍⟂ 𝐁̃⟂ + 𝑖𝜔�𝑬‖ = 0 gives the following
two identities:

𝜕𝑧𝐵̂⟂,𝑥 = −𝑖𝜔𝐸̂‖,𝑦, 𝜕𝑧𝐵̂⟂,𝑦 = 𝑖𝜔𝐸̂‖,𝑥.

Then, using the first identity with the first line of (3.54) imposes 𝐵+𝑦 = 𝐵−𝑦 = 0, and the second
identity with the second line of (3.54) gives 𝐵+𝑥 = 𝐵−𝑥 = 0.
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Remark 3.3.19. Notice that there is a priori no condition on 𝐸𝑧, the third component of ̂𝑬‖. Indeed,
the above Fourier Silver-Müller condition controls the energy of 𝐁⟂ and 𝑬‖, solutions of the TM

problem (3.22), via the flux through the planes {𝑧 = ±𝑅} of the Poynting vector ̂𝑷 = ̂𝑬‖ × 𝑩⟂. In
particular, with Ω = {(𝑥, 𝑦 , 𝑧) ∈ ℝ3, 𝑧 ∈ (−𝑅, 𝑅)}, one can show that

Re∫
𝜕Ω

̂𝑷 ⋅ 𝒏d𝒙 = 0.

Since 𝐸̂𝑧 is not involved in the quantity ̂𝑷 ⋅ 𝒆𝑧, it is naturally not involved in (3.54).

3.4 Conclusions

This chapter provides some results about the existence and the uniqueness of the solution to the
hyperbolic 3D Maxwell problem in free space (3.2). This was achieved in three main steps:

• the splitting of the original problem into the reduced TE problem (3.20) and the reduced
TM problem (3.22), where we justified the equivalence between these problems ;

• the existence of smooth solutions of the TE problem (3.20) and their uniqueness via a classic
Silver-Müller radiation condition ;

• the existence of smooth solutions of the TM problem (3.22) and their uniqueness via the
establishment a Silver-Müller radiation condition expressed with partial Fourier transforms.

Moreover, some results of [22], originally stated for the 2D hyperbolic problems, have been
extended to 3D. On the other hand, we pointed out some difficulties in establishing a radiation
condition without the use of partial Fourier transforms.

Although the uniqueness or the existence are well established, we still lack the results on
the control of the solutions in well-fitted norms (in particular those which would account for
the propagation of singularities along characteristics). Our next step would be establishing the
boundary integral equation framework for this problem, which would allow us to consider more
complicated cases of half-bounded, and, eventually, bounded domains.
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APPENDIXA

Appendix

A.1 Proof of Lemma 3.1.5

Lemma A.1.1 ([6]). The dispersion function is written:

𝐹𝜔(𝒌) = (𝜔2 − 𝜔⟂(𝒌)2) (𝜔2 − 𝜔+
‖ (𝒌)

2) (𝜔2 − 𝜔−
‖ (𝒌)

2)

= (𝜔2 − 𝜔2
𝑝) (𝜔2 − |𝒌|2) (𝜔2 − 𝛽(𝜔)−1|𝒌∥|2 − 𝑘2𝑧 ) ,

(A.1)

where 𝜔⟂(𝒌)2 = |𝒌|2, and 𝜔±
‖ (𝒌)

2 = 1
2 (𝜔

2
𝑝 + |𝒌|2 ± √Δ(𝒌)) with Δ(𝒌) = (𝜔2

𝑝 + |𝒌|2)
2
− 4𝑘2𝑧𝜔2

𝑝 ≤ 0.
Then 𝐹𝜔 vanishes if:

1. 𝜔⟂(𝒌)2 = 𝜔2 and the associated eigenspace is span (𝒌‖, 𝒆𝑧)
⟂.

2. 𝜔±
‖ (𝒌)

2 = 𝜔2 and the associated eigenspaces are subset of span (𝒌‖, 𝒆𝑧).

Proof. We reproduce here the proof given in [6]. The matrix

𝔸(𝒌) = |𝒌|2𝕀3 − 𝒌𝒌⊤ + 𝜔2
𝑝𝒆𝑧𝒆⊤𝑧

is symmetric, so its eigenvectors are orthogonal.
We first assume that |𝒌∥|2 = 𝑘2𝑥 + 𝑘2𝑦 ≠ 0. Thus, a first eigenvector is 𝒆𝑧 × 𝒌 ≠ 0:

𝔸(𝒌)(𝒆𝑧 × 𝒌) = [|𝒌|2𝕀3 − 𝒌𝒌⊤ + 𝜔2
𝑝𝒆𝑧𝒆⊤𝑧 ] (𝒆𝑧 × 𝒌) = |𝒌|2(𝒆𝑧 × 𝒌).

Thus, the first eigenvalue is 𝜔⟂ (𝒌)
2 = |𝒌|2, and the associated space is span (𝒌⟂).

The other two eigenvectors of 𝔸(𝒌) are therefore in span(𝒌, 𝒆𝑧) = span(𝒌∥, 𝒆𝑧). Let 𝒗 ∈
span(𝒌∥, 𝒆𝑧) ⧵ {0} be an eigenvector of the system. We have:

(𝔸(𝒌)𝒗) ⋅ 𝒌 = 𝜔2
𝑝𝑘𝑧𝑣𝑧 = 𝜔2𝒗 ⋅ 𝒌,

(𝔸(𝒌)𝒗) ⋅ 𝒆𝑧 = (|𝒌|2 + 𝜔2
𝑝) 𝑣𝑧 − 𝑘𝑧 (𝒌 ⋅ 𝒗) = 𝜔2𝑣𝑧.

Notice that 𝑣𝑧 ≠ 0: by contradiction, if 𝑣𝑧 = 0 then 𝒗 ⋅ 𝒌 = 0 which is not possible. By multiplying
the second equation by 𝜔2 and replacing 𝜔2𝒗 ⋅ 𝒌 by 𝜔2

𝑝𝑘𝑧𝑣𝑧, we obtain the equation:

𝜔4 − 𝜔2 (|𝒌|2 + 𝜔2
𝑝) + 𝜔2

𝑝𝑘2𝑧 = 0. (A.2)
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The solutions of this equation are the two other eigenvalues:

𝜔±
‖ (𝒌)2 =

𝜔2
𝑝 + |𝒌|2 ± √Δ(𝒌)

2
, with Δ(𝒌) = (𝜔2

𝑝 + |𝒌|2)
2
− 4𝑘2𝑧𝜔2

𝑝.

By factoring the equation (A.2) by (𝜔2 − 𝜔2
𝑝), this equation can be rewritten in the form:

(𝜔2 − 𝜔2
𝑝) (𝜔2 − (1 −

𝜔2
𝑝

𝜔2)
−1

|𝒌∥|2 − 𝑘2𝑧) = 0.

Finally, if 𝒌∥ = 0, i.e., 𝒌 = 𝑘𝑧𝒆𝑧, then 𝔸(𝒌) = 𝑘2𝑧 𝕀3 + (𝜔2
𝑝 − 𝑘2𝑧 ) 𝒆𝑧𝒆⊤𝑧 . Thus, its eigenvalue-vector

pairs are (𝜔2
𝑝, 𝒆𝑧), (𝑘2𝑧 , 𝒆𝑥) and (𝑘2𝑧 , 𝒆𝑦). Notice that 𝜔⟂(𝑘𝑧𝒆𝑧)2 = 𝑘2𝑧 , 𝜔+

‖ (𝑘𝑧𝒆𝑧)
2 = max (𝜔2

𝑝, 𝑘2𝑧 ) and

𝜔−
‖ (𝑘𝑧𝒆𝑧)

2 = min (𝜔2
𝑝, 𝑘2𝑧 ). Moreover, the associated eigenspace is span (𝒆𝑧)

⟂ when 𝑘2𝑧 = 𝜔2.

A.2 Reduced differential operators

The following operators are introduced in section 3.1.4:

𝐜𝐮𝐫𝐥 𝑭 = (
𝜕𝑦𝐹𝑧 − 𝜕𝑧𝐹𝑦
𝜕𝑧𝐹𝑥 − 𝜕𝑥𝐹𝑧

) , curl⟂ 𝑭 = 𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥, div⟂ 𝑭 = 𝜕𝑥𝐹𝑥 + 𝜕𝑦𝐹𝑦,

𝒄𝒖𝒓𝒍⟂ 𝐅̃ =
⎛
⎜
⎜
⎝

−𝜕𝑧𝐹𝑦
𝜕𝑧𝐹𝑥

𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥

⎞
⎟
⎟
⎠

, curl⟂ 𝐅̃ = 𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥, div⟂ 𝐅̃ = 𝜕𝑥𝐹𝑥 + 𝜕𝑦𝐹𝑦,

𝒄𝒖𝒓𝒍⟂ 𝑓 = 𝒄𝒖𝒓𝒍(𝑓 𝐞𝑧) =
⎛
⎜
⎜
⎝

𝜕𝑦𝑓

−𝜕𝑥𝑓

0

⎞
⎟
⎟
⎠

, ∇̃ 𝑓 = (
𝜕𝑥𝑓

𝜕𝑦𝑓
) ∆⟂ 𝑓 = div⟂ ∇̃ 𝑓 = div⟂ ∇ 𝑓 = 𝜕2𝑥𝑓 + 𝜕2𝑦𝑓 ,

where 𝑭 = (𝐹𝑥, 𝐹𝑦, 𝐹𝑧)⊤ and 𝐅̃ = (𝐹𝑥, 𝐹𝑦)⊤. Notice that the operators are consistent with the
classical 𝒄𝒖𝒓𝒍-operator since

𝒄𝒖𝒓𝒍 𝒄𝒖𝒓𝒍 𝑭 = 𝒄𝒖𝒓𝒍⟂ 𝐜𝐮𝐫𝐥 𝑭 + 𝒄𝒖𝒓𝒍⟂ curl⟂ 𝑭 .

Then, we have the following identities:

𝐜𝐮𝐫𝐥 𝒄𝒖𝒓𝒍⟂ 𝐅̃ = ∇̃ div⟂ 𝐅̃ − 𝚫𝐅̃, (A.3)

𝒄𝒖𝒓𝒍⟂ 𝐜𝐮𝐫𝐥 𝑭 = ∇ div 𝑭 − 𝜟𝑭 − 𝒄𝒖𝒓𝒍⟂ curl⟂ 𝑭 , (A.4)

𝐜𝐮𝐫𝐥 �−1 𝒄𝒖𝒓𝒍⟂ 𝐅̃ = 𝛽−1 ∇̃ div⟂ 𝐅̃ − 𝚫𝛽𝐅̃, (A.5)

𝒄𝒖𝒓𝒍⟂ 𝐜𝐮𝐫𝐥 �−1𝑭 = 𝛽−1�∇ div 𝑭 − 𝚫𝛽𝑭 − 𝛽−1 𝒄𝒖𝒓𝒍⟂ curl⟂ 𝑭 , (A.6)

curl⟂ 𝐜𝐮𝐫𝐥 𝑭 = 𝜕𝑧 div⟂ 𝑭 − ∆⟂ 𝐹𝑧, (A.7)

curl⟂ 𝒄𝒖𝒓𝒍⟂ 𝐅̃ = 𝜕𝑧 div⟂ 𝐅̃, (A.8)

Additionally, we have:

div⟂ 𝐜𝐮𝐫𝐥 𝑭 = −𝜕𝑧 curl⟂ 𝑭 , (A.9)

div⟂ 𝒄𝒖𝒓𝒍⟂ 𝐅̃ = −𝜕𝑧 curl⟂ 𝐅̃. (A.10)
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A.3 Reminder on Helmholtz Fundamental Solutions

Let us recall some technical lemmas related to the classical Helmholtz equation in ℝ and ℝ3.

Lemma A.3.1. For 𝜔 ∈ ℂ ⧵ ℝ, the unique fundamental solution in 𝒮 ′(ℝ) to the 1D Helmholtz
equation −𝒢″

𝜔 − 𝜔2𝒢𝜔 = 𝛿0 is

𝒢𝜔(𝑥) = −𝛾𝑒
𝛾 𝑖𝜔|𝑥|

2𝑖𝜔
, with 𝛾 = sign Im𝜔. (A.11)

Proof. The application of the Fourier transform to the equation gives (𝑘2 − 𝜔2)ℱ 𝒢𝜔 = 1 in 𝒮 ′(ℝ).
Since 𝜔 ∈ ℂ ⧵ ℝ, the function 𝑘 ↦ (𝑘2 − 𝜔2)−1 belongs to 𝒞∞(ℝ), so that its singular support is

empty. Therefore, the multiplication of (𝑘2 − 𝜔2)−1 and (𝑘2 − 𝜔2)ℱ 𝒢𝜔 is valid1 in 𝒮 ′(ℝ). Then,
we have ℱ𝒢𝜔(𝑘) = (𝑘2 − 𝜔2)−1 ∈ 𝐿1(ℝ) and

𝒢𝜔(𝑥) =
1
2𝜋 ∫

ℝ

𝑒𝑖𝑘𝑥

𝑘2 − 𝜔2 d𝑘.

For Im𝜔 > 0, the application of the residue theorem on [−𝑅, 𝑅] ∪ {𝑅𝑒𝑖𝜃, 𝜃 ∈ [0, 𝜋]} for 𝑥 > 0 or
[−𝑅, 𝑅] ∪ {𝑅𝑒𝑖𝜃, 𝜃 ∈ [−𝜋, 0]} for 𝑥 < 0 yields 𝒢𝜔(𝑥) = − exp(𝑖𝜔𝑥)

2𝑖𝜔 . A similar argument for Im𝜔 < 0

results in 𝒢𝜔(𝑥) =
exp(−𝑖𝜔𝑥)

2𝑖𝜔 .

Lemma A.3.2. For 𝜔 ∈ ℂ ⧵ ℝ, the unique fundamental solution in 𝒮 ′(ℝ3) to the 3D Helmholtz
equation −Δ𝒢𝜔 − 𝜔2𝒢𝜔 = 𝛿0 is

𝒢𝜔(𝒙) =
𝑒𝛾 𝑖𝜔|𝒙|

4𝜋|𝒙|
, with 𝛾 = sign Im𝜔. (A.12)

Proof. Applying the Fourier transform to the equation, one obtains that (|𝒌|2 − 𝜔2)ℱ 𝒢𝜔 = 1.
Since 𝜔 ∈ ℂ ⧵ ℝ, the function 𝒌 ↦ (|𝒌|2 − 𝜔2)−1 belongs to 𝒞∞(ℝ3), and its singular support is

empty. Therefore, we have ℱ𝒢𝜔(𝒌) = (|𝒌|2 − 𝜔2)−1 ∈ 𝐿2(ℝ3) and

𝒢𝜔(𝒙) = lim
𝑅→+∞

1
(2𝜋)3 ∫𝐵𝑅

𝑒𝑖𝒌⋅𝒙

|𝒌|2 − 𝜔2 d𝒌.

Therefore, a simple computation gives

1
(2𝜋)3 ∫𝐵𝑅

𝑒𝑖𝒌⋅𝒙

|𝒌|2 − 𝜔2 d𝒌 = 1
(2𝜋)3 ∫

𝑅

𝜌=0
∫
𝜋

𝜃=0
∫
2𝜋

𝜑=0

𝜌2 sin 𝜃𝑒𝑖𝜌|𝒙| cos 𝜃

𝜌2 − 𝜔2 d𝜌d𝜃d𝜑

= 2
(2𝜋)2|𝒙| ∫

𝑅

0

𝜌 sin(𝜌|𝒙|)
𝜌2 − 𝜔2 d𝜌

= 1
(2𝑖𝜋)(4𝜋|𝒙|) ∫

𝑅

−𝑅

𝜌𝑒𝑖𝜌|𝒙|

𝜌2 − 𝜔2 d𝜌.

Finally, by applying the residue theorem on [−𝑅, 𝑅] ∪ {𝑅𝑒𝑖𝜃, 𝜃 ∈ [0, 𝜋]} and taking the limit as
𝑅 → +∞, we obtain the expected result.

1This step guarantees the uniqueness of the fundamental solution. The multiplication is obviously not valid if
𝜔 ∈ ℝ.
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Another useful lemma concerns the scaled Helmholtz equation.

Corollary A.3.3. The fundamental solution of the scaled Helmholtz equation

− ̃𝛽−1 (𝜕2𝑥 + 𝜕2𝑦) 𝑢 − 𝜕2𝑧 𝑢 − 𝜔2𝑢 = 𝛿0,

with ̃𝛽 > 0 and 𝜔 ∈ ℂ ⧵ ℝ is

𝒢
̃𝛽

𝜔 (𝑥, 𝑦 , 𝑧) = ̃𝛽
exp (𝛾 𝑖𝜔√

̃𝛽(𝑥2 + 𝑦2) + 𝑧2)

4𝜋√
̃𝛽(𝑥2 + 𝑦2) + 𝑧2

, 𝛾 = sign(Im𝜔). (A.13)

Proof. The application of change of variables (𝑥, 𝑦 , 𝑧) = ( ̃𝛽−1/2𝑥1, ̃𝛽−1/2𝑥2, 𝑥3) to the scaled
Helmholtz equation leads back to the classical 3D Helmholtz equation

−Δ𝒢
̃𝛽

𝜔 − 𝜔2𝒢
̃𝛽

𝜔 = ̃𝛽𝛿0.

One can verify [34, example 6.1.3] with 𝑓 (𝑥1, 𝑥2, 𝑥3) = ( ̃𝛽−1/2𝑥1, ̃𝛽−1/2𝑥2, 𝑥3) for the scaling in
front of the Dirac measure. Finally, applying Lemma A.3.2 is sufficient to conclude.

A.4 Hyperbolic coordinates

The 2D Helmholtz equation can be naturally written with the polar coordinates:

−1
𝑟
𝜕𝑟 (𝑟𝜕𝑟𝑢) −

1
𝑟2
𝜕2𝜃 𝑢 − 𝜔2𝑢 = 𝑓 .

However, the polar coordinates are clearly not adapted to the 2D hyperbolic Helmholtz equation
studied in [22]:

−𝛽−1𝜕2𝑥𝑢 − 𝜕2𝑧 𝑢 − 𝜔2𝑢 = 𝑓 .

Let us assume 𝛽 = −1 for this paragraph. Then, making the change of variable 𝜉 = 𝑧 − 𝑥, 𝜂 = 𝑧 + 𝑥
leads to the equation

4𝜕2𝜉𝜂𝑢 + 𝜔2𝑢 = 𝑓 ,

with some abuse of notation. But this change of variable is not possible in the 3D coordinates
since it corresponds to a rotation of the 𝑥𝑧-plane of a 𝜋/4-angle. Another system of coordinates
in which the equation could be studied is the following:

𝑥 = 𝜌 sinh 𝜃, 𝑦 = 𝜌 cosh 𝜃,

with 𝜌 > 0 and 𝜃 ∈ ℝ. This change of coordinates maps the upper cone {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑦 > |𝑥|}
onto (0, +∞) × ℝ. In this system of coordinate, the equation becomes

−1
𝜌
𝜕𝜌 (𝜌𝜕𝜌𝑢) +

1
𝜌2

𝜕2𝜃 𝑢 − 𝜔2𝑢 = 𝑓 .

Then, this equation is very similar with the classical Helmholtz equation in polar coordinates
except the presence of a minus sign in front of the second term 𝜌−2𝜕2𝜃 𝑢. Then, the equivalent
change in 3D is

𝑥 = 𝜌 sinh 𝜃 cos 𝜑, 𝑦 = 𝜌 sinh 𝜃 sin 𝜑, 𝑧 = 𝜌 cosh 𝜃,

with 𝜌 > 0, 𝜃 > 0 and 𝜑 ∈ (−𝜋, 𝜋).
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The propagation of electromagnetic waves inside the plasma has already been investigated in
[49]. In particular, a numerical method based on a mixed variational formulation was proposed
in [49]. This method is summarized in §4.2. From the physics viewpoint, There is a logarithmic
singularity that is responsible for plasma heating phenomenon [25, 26]. In what follows, we study
a mathematical model that allows to recover this singular behavior.

We consider a bounded Lipschitz domain 𝐷 in ℝ2. Let 𝜆 > 0 and 𝑓 ∈ 𝐿2(𝜕𝐷). We study the
following boundary value problem:

|
− div⟂(�0 ∇⟂ 𝐵3) − 𝜔2𝐵3 = 0 in 𝐷,

(�0 ∇⟂ 𝐵3) ⋅ 𝐧⟂ + 𝑖𝜆𝐵3 = 𝑓 on 𝜕𝐷,
(4.1)

where 𝐧⟂ denotes the outward unit vector field to 𝜕𝐷. According to our model, it holds that
�0(𝐱⟂) = 𝛼0(𝐱⟂)ℍ(𝐱⟂), where the scalar field 𝛼0 and the hermitian matrix field ℍ are 𝒞 2(𝐷)-
regular (cf. (2.7)). We set 𝐷𝑝 = {𝐱⟂ ∈ 𝐷 ∶ 𝛼0(𝐱⟂) > 0}, 𝐷𝑛 = {𝐱⟂ ∈ 𝐷 ∶ 𝛼0(𝐱⟂) < 0}, and
recall that the interface 𝐼 = {𝐱⟂ ∈ 𝐷 ∶ 𝛼0(𝐱⟂) = 0} is a 𝐶1-loop (without self-intersections). We
assume here that meas(𝐷𝑝,𝑛) > 0, and that 𝐼 does not intersect 𝜕𝐷. Observe that outside every
neighborhood of 𝐼 we are solving a classic second-order elliptic PDE with smooth coefficients.
Hence, following the classical theory, we shall look for a solution that belongs to 𝐻 1 outside this
neighborhood. To fix ideas, we consider the case where that 𝐷 is a tubular neighborhood of 𝐼.
Finally, we recall that |𝛼 | behaves like dist(⋅, 𝐼 ) in a neighborhood of the interface.

Remark 4.0.1. The limit conditions have been chosen so that it mimics the classical absorbing
condition used to solve Maxwell’s system in bounded domain, see [1] for example. Instinctively,
the problem is a priori solvable for any frequency 𝜔, and this choice allows us to focus on the
appearance of the singular behavior of the solutions at the interface.



Chapter 4. State of the art

4.1 Mathematical setting

Like in [49], we focus on the problem (4.1) posed in the neighborhood of the interface. Let
Ω = (−𝑎, 𝑎)× (0, 𝐿) be a subset of ℝ2, with the normalized orthogonal coordinates (𝑥, 𝑦). Introduce
the bijective transform 𝜓 ∶ 𝐱 = (𝑥, 𝑦) → 𝐱⟂ which maps Ω to 𝐷 with the following properties,
see Figure 4.1:

• the preimage of the interface 𝐼 is the straight line Σ = {0} × [0, 𝐿) ;

• the preimage of the subregion 𝐷𝑛 is the rectangle Ω𝑛 = (−𝑎, 0) × (0, 𝐿) ;

• the preimage of the subregion 𝐷𝑝 is the rectangle Ω𝑝 = (0, 𝑎) × (0, 𝐿) ;

• the preimage of 𝜕𝐷𝑛 ⧵ 𝐼 is the straight line {−𝑎} × [0, 𝐿) ;

• the preimage of 𝜕𝐷𝑝 ⧵ 𝐼 is the straight line {𝑎} × [0, 𝐿) ;

• the image of (−𝑎, 𝑎) × {0} is equal to the image of (−𝑎, 𝑎) × {𝐿}.

𝑡

𝑛

•

𝐷𝑛

𝐷𝑝

𝐼

𝐷

x⟂ = 𝜓(𝑥, 𝑦)

𝑥 = −𝑎
𝑦 = 0

𝑥 = 𝑎

𝑦 = 𝐿

Ω𝑝Ω𝑛

Σ

Γ𝑛 Γ𝑝𝝉

𝝂

Figure 4.1: [Left] The tubular neighborhood 𝐷 of 𝐼. [Right] The domain Ω = (−𝑎, 𝑎) × (0, 𝐿).
[Center] The transform 𝜓 ∶ Ω → 𝐷 with 𝜓(Σ) = 𝐼, 𝜓(Ω𝑝,𝑛) = 𝐷𝑝,𝑛 and 𝜓(Γ𝑝,𝑛) = 𝜕𝐷𝑝,𝑛 ⧵ 𝐼.

We split the boundary of Ω into 4 components:

Γ𝑝 = {𝑎} × (0, 𝐿), Γ𝑛 = {−𝑎} × (0, 𝐿), Γ1 = (−𝑎, 𝑎) × {0}, Γ2 = (−𝑎, 𝑎) × {𝐿}.

Let 𝑢 ≔ 𝐵3 ∘ 𝜓. Then, we have ∇𝐵3(𝐱⟂) = [𝐷𝜓(𝐱)]−𝑡 ∇𝑢(𝐱)where 𝐱⟂ = 𝜓(𝐱). Then, expressing
(4.1) variationally and following [9, §2.1.3], we have for all 𝑣 ∈ 𝒞 1(Ω)

∫
𝐷
{�0(𝐱⟂)∇𝐵3(𝐱⟂) ⋅ ∇𝑣(𝐱⟂) − 𝜔2𝐵3(𝐱⟂)𝑣(𝐱⟂)} d𝐱⟂

= ∫
Ω
{�(𝐱)∇𝑢(𝐱) ⋅ ∇𝑤(𝐱) − 𝜔2𝐽 (𝐱)𝑢(𝐱)𝑤(𝐱)} d𝐱

where 𝑤 = 𝑣 ∘ 𝜓, 𝐽 (𝐱) = |det𝐷𝜓(𝐱)| and �(𝐱) = 𝐽 (𝐱)[𝐷𝜓(𝐱)]−1�0(𝐱⟂)[𝐷𝜓(𝐱)]−𝑡 with the corre-
spondence 𝐱⟂ = 𝜓(𝑥, 𝑦). Next, on the interface 𝜕𝐷, we have for all 𝑣 ∈ 𝒞 1(Ω)

∫
𝜕𝐷

{�0(𝐱⟂)∇𝐵3(𝐱⟂) ⋅ 𝐧⟂(𝐱⟂) + 𝑖𝜆𝐵3(𝐱⟂)} 𝑣(𝐱⟂)ds(𝐱⟂)

= ∫
Γ𝑛∪Γ𝑝

{�(𝐱)∇𝑢(𝐱) ⋅ 𝐧(𝐱) + 𝑖𝜆𝐽𝐧(𝐱)𝑢(𝐱)} 𝑤(𝐱)ds(𝐱)
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where 𝐽𝐧(𝐱) = 𝐽 (𝐱) ‖[𝐷𝜓(𝐱)]−𝑡 𝐧‖ℝ2 and 𝐧 denotes the outward unit vector field to 𝜕Ω. Thus, the
problem on 𝑢 is

|
|
|
|
|
|

− div(�∇𝑢) − 𝜔2𝐽 (𝑥)𝑢 = 0 in Ω,

�∇𝑢 ⋅ 𝐧 + 𝑖𝜆𝐽𝐧𝑢 = ̃𝑓 on Γ𝑛 ∪ Γ𝑝,

𝑢(𝑥, 0) = 𝑢(𝑥, 𝐿), (�∇𝑢 ⋅ 𝐞𝑦)(𝑥, 0) = (�∇𝑢 ⋅ 𝐞𝑦)(𝑥, 𝐿), 𝑥 ∈ (−𝑎, 𝑎),

with ̃𝑓 (𝐱) = 𝐽𝐧(𝐱)𝑓 ∘ 𝜓 (𝐱). Above, the divergence and gradient operators are the classical 2D
operators. The last condition accounts for periodicity.

We can assume that the transform is volume preserving so that 𝐽 (𝐱) = 1 and 𝐽𝐧(𝐱) = 1. This
requirement does not reduce the scope of the study since there exist two constants 𝐶min, 𝐶max > 0
such that 𝐶min ≤ 𝐽(𝐱) ≤ 𝐶max for all 𝐱 ∈ Ω, and 𝐶min ≤ 𝐽𝐧(𝐱) ≤ 𝐶max for all 𝐱 ∈ Γ𝑛 ∪Γ𝑝. Therefore,
the definition of �(𝐱) in (4.1) changes to �(𝐱) = [𝐷𝜓(𝐱)]−1�0(𝐱⟂)[𝐷𝜓(𝐱)]−𝑡.

In what follows, we make two simplifying technical assumptions. First, that � is pointwise
proportional to the identity matrix, that is �(𝐱) = 𝛼(𝐱) ( 1 0

0 1 ) everywhere in Ω. Here we use, with
an abuse of notation, the same letter for the new coefficient 𝛼(𝐱) and the coefficient 𝛼(𝐱⟂) in (2.6);
those however are not to be confused. In this situation, the model can be recast as

|
|
|
|
|
|

− div(𝛼∇𝑢) − 𝜔2𝑢 = 0 in Ω,

𝛼𝜕𝑛𝑢 + 𝑖𝜆𝑢 = 𝑓 on Γ𝑛 ∪ Γ𝑝,

𝑢(𝑥, 0) = 𝑢(𝑥, 𝐿), (𝛼𝜕𝑦)𝑢(𝑥, 0) = (𝛼𝜕𝑦)𝑢(𝑥, 𝐿), 𝑥 ∈ (−𝑎, 𝑎).

(4.2)

Let 𝚛(𝑦) ≔ 𝜕𝑦𝛼(0, 𝑦). Notice that 𝚛 ∈ 𝒞 1
𝑝𝑒𝑟(0, 𝐿). We assume that the sign change of 𝛼 does not

degenerate, i.e., 𝚛(𝑦) > 0 for all 𝑦 ∈ (0, 𝐿). Due to these assumptions, the behavior of 𝛼 near the
interface Σ = {(𝑥, 𝑦) ∶ 𝑥 = 0} is simple:

𝛼(𝑥, 𝑦) = 𝚛(𝑦)𝑥 + 𝒪(𝑥2).

Because the coefficient 𝛼 is a scalar, we observe that the interface Σ is now described by {(𝑥, 𝑦) ∶
𝛼(𝑥, 𝑦) = 0}, while the two subdomains are respectively described by Ω𝑝 = {(𝑥, 𝑦) ∶ 𝛼(𝑥, 𝑦) > 0}
and Ω𝑛 = {(𝑥, 𝑦) ∶ 𝛼(𝑥, 𝑦) < 0}.

There remains to specify the requested regularity of 𝑢, so as to allow for the modelling of
plasma heating. In this manuscript, we look for limiting absorption solutions of the above problem,
namely, we look for 𝑢 being an 𝐿2-weak limit of 𝑢𝜈, as 𝜈 → 0+, where 𝑢𝜈 ∈ 𝐻 1(Ω) is solution of
the following limiting absorption problem:

|
|
|
|
|
|
|
|

find 𝑢𝜈 ∈ 𝐻 1(Ω) s.t.

− div((𝛼 + 𝑖𝜈)∇𝑢𝜈) − 𝜔2𝑢𝜈 = 0 in Ω,

(𝛼 + 𝑖𝜈) 𝜕𝑛𝑢𝜈 + 𝑖𝜆𝑢𝜈 = 𝑓 on Γ𝑛 ∪ Γ𝑝,

𝑢𝜈(𝑥, 0) = 𝑢𝜈(𝑥, 𝐿), ((𝛼 + 𝑖𝜈) 𝜕𝑦) 𝑢𝜈(𝑥, 0) = ((𝛼 + 𝑖𝜈) 𝜕𝑦) 𝑢𝜈(𝑥, 𝐿), 𝑥 ∈ (−𝑎, 𝑎).

(4.3)

Proposition 4.1.1. The problem (4.3) is well-posed for all 𝜔 ∈ ℝ and for all 𝜈 positive. Moreover, for
small enough 𝜈 > 0, there is a constant independent of 𝜈 such that its unique solution verifies

‖𝑢𝜈‖𝐻 1(Ω) ≤
𝐶
𝜈
‖𝑓‖𝐿2(Γ𝑝∪Γ𝑛) .
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Proof. The variational form of the problem (4.3) is

find 𝑢𝜈 ∈ 𝐻 1
𝑝𝑒𝑟 ,𝑦(Ω) s.t.

∫
Ω
[(𝛼 + 𝑖𝜈) ∇𝑢𝜈 ⋅ ∇𝑣 − 𝜔2𝑢𝜈𝑣] d𝐱 + 𝑖𝜆 ∫

Γ𝑝∪Γ𝑛
𝑢𝜈𝑣ds

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑏𝜈(𝑢𝜈,𝑣)

= ∫
Γ𝑝∪Γ𝑛

𝑓 𝑣ds
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℓ(𝑣)

, for all 𝑣 ∈ 𝐻 1
𝑝𝑒𝑟 ,𝑦(Ω).

Since the 𝐿2(Γ𝑝 ∪ Γ𝑛)-norm is controlled by the 𝐻 1(Ω)-norm, 𝑏𝜈 and ℓ are continuous in 𝐻 1(Ω).
Given that for all 𝑢 ∈ 𝐻 1

𝑝𝑒𝑟 ,𝑦(Ω)

Re 𝑏𝜈(𝑢, 𝑢) ≤ ‖𝛼‖∞ ‖∇𝑢‖2𝐿2(Ω) − 𝜔2 ‖𝑢‖2𝐿2(Ω) , Im 𝑏𝜈(𝑢, 𝑢) = 𝜈 ‖∇𝑢‖2𝐿2(Ω) + 𝜆 ‖𝑢‖2𝐿2(Γ𝑝∪Γ𝑛) ,

we easily obtain for 𝜔 ≠ 0 that

‖𝑢‖2𝐻 1(Ω) ≤ Re (−(1 +
𝑖 (‖𝛼‖∞ + 𝜔2)

𝜈𝜔2 ) 𝑏𝜈(𝑢, 𝑢))

On the other hand, if 𝜔 = 0, then we use Poincaré-Friedrichs inequality (see e.g., [54, example
2.7])

‖𝑢‖2𝐿2(Ω) ≤ 𝐶 (‖∇𝑢‖2𝐿2(Ω) + ‖𝑢‖2𝐿2(Γ𝑝∪Γ𝑛))

for some 𝐶 > 0, so that

‖𝑢‖2𝐻 1(Ω) ≤ Im (
𝜆(1 + 𝐶) + 𝜈𝐶

𝜈𝐶
𝑏𝜈(𝑢, 𝑢)) .

The Lax-Milgram theorem allows us to conclude in both cases.

Up to our knowledge, the limiting absorption principle can be justified in 1D, as well as for
particular values of 𝛼(𝑥, 𝑦) in slab geometries, cf. [25, 26]. Let us provide an illuminating example
whose goal is two-fold. On one hand, we will show how the limiting absorption principle leads to
the occurrence of a logarithmic singularity in the solution. On the other hand, we will highlight
the difficulty in the choice of the functional framework that would accommodate such singular
solutions. Consider the 1D boundary-value problem: given 𝑐1, 𝑐2 ∈ ℝ, find 𝑢 solving

−(𝑥𝑢′)′ = 0 on ℐ ≔ (−𝑎, 𝑎), 𝑢(−𝑎) = 𝑐1, 𝑢(𝑎) = 𝑐2.

In this 1D setting, Σ = {0}. We could have looked for the solution to the above problem in the

space ℋ 1
1/2(ℐ ) = 𝐶∞(ℐ)

‖.‖|𝛼 |1/2 , where

‖𝑣‖2|𝛼|1/2 = ∫
ℐ
|𝑣 |2 + ∫

ℐ
|𝑥 ||𝑣 ′|2.

In the definition of the norm above, the choice of the weight in front of |𝑣 ′|2 is motivated by the
ODE itself, since after multiplying it by any admissible function 𝑣 supported away from 0 in either
ℐ𝑝 = (0, 𝑎) or ℐ𝑛 = (−𝑎, 0) and integrating by parts, one gets a volume term like ±∫ℐ𝑝,𝑛

|𝑥 |𝑢′𝑣 ′.
In this space, the bilinear form associated to the above equation is obviously continuous. A
straightforward computation shows that in this case 𝑢 is a piecewise constant function

𝑢 = 𝑐1 on (−𝑎, 0), 𝑢 = 𝑐2 on (0, 𝑎).

We see that the above solution does not contain any singularity other than the jump at the origin.
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On the other hand, we can have a look at the limiting absorption solution to the above
equation, where the absorption solution solves

−((𝑥 + 𝑖𝜈)(𝑢𝜈)′)′ = 0 on ℐ , 𝑢𝜈(−𝑎) = 𝑐1, 𝑢𝜈(𝑎) = 𝑐2.

In particular, for each 𝜈 > 0 the 𝐻 1(ℐ )-solution to this problem is unique. With 𝑧 ↦ log 𝑧 defined
by its principal value (i.e., log(𝑧) = log |𝑧| + 𝑖Arg(𝑧), Arg 𝑧 ∈ (−𝜋, 𝜋)), we then compute the
solution to the above equation

𝑢𝜈 = 𝑎𝜈 log(𝑥 + 𝑖𝜈) + 𝑏𝜈, with 𝑎𝜈 =
𝑐2 − 𝑐1

log(𝑎 + 𝑖𝜈) − log(−𝑎 + 𝑖𝜈)
, and 𝑏𝜈 = 𝑐2 − 𝑎𝜈 log(𝑎 + 𝑖𝜈).

Since log (𝑥 + 𝑖𝜈) −−−−−→
𝜈→0+

log |𝑥 | + 𝑖𝜋𝟙𝑥<0 for 𝑥 ∈ ℝ∗, the limiting absorption solution 𝑢+(𝑥) =
lim
𝜈→0+

𝑢𝜈 is given by the pointwise limit

𝑢+(𝑥) = 𝑎+ (log |𝑥 | + 𝑖𝜋𝟙𝑥<0) + 𝑏+, 𝑎+ =
𝑐1 − 𝑐2
𝑖𝜋

, 𝑏+ = 𝑐2 − 𝑎+ log 𝑎.

Note that ∫ℐ |𝑥 ||(𝑢+)′|2 = +∞ as soon as 𝑎+ ≠ 0. We thus see the difference between two solutions
𝑢 ∈ ℋ 1

1/2(ℐ ) and 𝑢+: the first one has a jump singularity only, while the second one has both a
logarithmic and a jump singularities. Therefore, we focus on approximating the latter solution
that includes the jump and logarithmic singularities for the 2D model (4.2). From now on, we use
the following notation to describe the singularity:

𝚂(𝑥) = log |𝑥 | + 𝑖𝜋𝟙𝑥<0.

Let 𝐶∞𝑝𝑒𝑟 ,𝑦 (Ω𝑗) = {𝑣 ∈ 𝐶∞(Ω𝑗) ∶ 𝜕𝑚𝑦 𝑣(𝑥, 0) = 𝜕𝑚𝑦 𝑣(𝑥, 𝐿), ∀𝑚}, 𝑗 ∈ {𝑝, 𝑛}. Introduce the two spaces

𝐻 1
1/2(Ω𝑗) = 𝐶∞𝑝𝑒𝑟 ,𝑦 (Ω𝑗)

‖.‖|𝛼 |1/2 , 𝑗 ∈ {𝑝, 𝑛}, with associated norm

‖𝑣‖2|𝛼|1/2 = ∫
Ω𝑗

|𝑣 |2 + ∫
Ω𝑗

|𝛼 ||∇𝑣 |2, 𝑗 ∈ {𝑝, 𝑛}.

Defining the above spaces is motivated by the same observation as above: multiplying the second-
order PDE by any admissible function 𝑣 supported either in Ω𝑝 or Ω𝑛 and integrating by parts, one
gets a volume term like ±∫Ω𝑝,𝑛

|𝛼 |∇𝑢 ⋅ ∇𝑣. It has been proved in [49, Proposition 4] that problem

(4.2) admits a unique solution in 𝐻 1
1/2(Ω𝑝) × 𝐻 1

1/2(Ω𝑛). On the other hand, 𝚂 ∉ 𝐻 1
1/2(Ω𝑗), 𝑗 ∈ {𝑝, 𝑛}

because of the logarithmic singularity.
In light of the 1D example, we consider from now on that one can recast the 2D model with

solution 𝑢 as follows.

Assumption 4.1.2. The family of solutions (𝑢𝜈)𝜈>0 of (4.3) converges in 𝐿2(Ω) to the limiting
absorption solution 𝑢+ ∈ 𝐿2(Ω)

𝑢𝜈
𝐿2(Ω)
−−−−−→
𝜈→0+

𝑢+. (4.4)

Moreover, 𝑢+ can be represented as
𝑢+ = 𝑢+𝑟𝑒𝑔 + 𝑢+𝑠𝑖𝑛𝑔,

where the pair (𝑢+𝑟𝑒𝑔, 𝑢+𝑠𝑖𝑛𝑔) is such that 𝑢+𝑟𝑒𝑔|Ω𝑝,𝑛
∈ 𝐻 1

1/2(Ω𝑝,𝑛) and 𝑢+𝑠𝑖𝑛𝑔(𝑥, 𝑦) = 𝑔+(𝑦)𝚂(𝑥) with
𝑔+ ∈ 𝐻 1

𝑝𝑒𝑟(Σ).
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Regarding the convergence, the validity of this assumption will be studied in chapter 5. On the
other hand, the mathematical relevance of assumption 4.1.2 is discussed in the next proposition.

Proposition 4.1.3. Let 𝑢+ be governed by (4.2).
In the framework of Assumption 4.1.2, there holds that 𝑢+ ∈ 𝐻 1(Ω⧵𝒱 (Σ)), for each neighborhood

of the interface 𝒱 (Σ).
Conversely, if 𝑢 can be decomposed as 𝑢+ = 𝑢+𝑟𝑒𝑔 + 𝑢+𝑠𝑖𝑛𝑔 where 𝑢+𝑟𝑒𝑔|Ω𝑝,𝑛

∈ 𝐻 1
1/2(Ω𝑝,𝑛) is periodic

in 𝑦-direction and where 𝑢+𝑠𝑖𝑛𝑔(𝑥, 𝑦) = 𝑔+(𝑦)𝚂(𝑥), and if there holds that 𝑢+ ∈ 𝐻 1 (Ω ⧵ 𝒱 (Σ)) for
each neighborhood of the interface 𝒱 (Σ), then 𝑔+ ∈ 𝐻 1

𝑝𝑒𝑟(Σ).

Proof. Away from the interface Σ, the norms of 𝐻 1
1/2(Ω𝑝,𝑛\𝒱 (Σ)) and 𝐻 1(Ω𝑝,𝑛\𝒱 (Σ)) are equiv-

alent. Therefore, given 𝑢+ within the framework of Assumption 4.1.2, we clearly have 𝑢+𝑟𝑒𝑔, 𝑢+𝑠𝑖𝑛𝑔 ∈
𝐻 1(Ω𝑝,𝑛\𝒱 (Σ)).

On the other hand, if 𝑢+ ∈ 𝐻 1 (Ω ⧵ 𝒱 (Σ)) and 𝑢+𝑟𝑒𝑔|Ω𝑝,𝑛
∈ 𝐻 1

1/2(Ω𝑝,𝑛) for all neighborhood of

the interface 𝒱 (Σ), then 𝑢+𝑠𝑖𝑛𝑔 ∈ 𝐻 1 (Ω ⧵ 𝒱 (Σ)). In particular for Ω𝜀
𝑝 = {(𝑥, 𝑦) ∈ Ω𝑝 ∶ 𝑥 > 𝜀}, we

have that
‖𝑢+𝑠𝑖𝑛𝑔‖

2
𝐻 1(Ω𝜀

𝑝)
= ‖𝑔+‖2𝐿2(Σ) ‖𝚂‖

2
𝐻 1(𝜀,𝑎) + ‖𝑔+′‖

2
𝐿2(Σ) ‖𝚂‖

2
𝐿2(𝜀,𝑎) ,

which shows that 𝑔+ ∈ 𝐻 1(Σ). The periodic conditions come from the periodicity of 𝑢+ and
𝑢+𝑟𝑒𝑔.

Starting from (4.4), it is easy to verify that the limiting absorption solution 𝑢+ is governed by
the 2D model

⎧⎪
⎨⎪
⎩

− div (𝛼∇𝑢+) − 𝜔2𝑢+ = 0 in Ω𝑝,𝑛,

𝛼𝜕𝑛𝑢+ + 𝑖𝜆𝑢+ = 𝑓 on Γ𝑝,𝑛,

𝑢+(𝑥, 0) = 𝑢+(𝑥, 𝐿), (𝛼𝜕𝑦)𝑢+(𝑥, 0) = (𝛼𝜕𝑦)𝑢+(𝑥, 𝐿), 𝑥 ∈ (−𝑎, 𝑎) a.e.

(4.5)

We identify the function 𝑢+𝑟𝑒𝑔 with a pair

𝐮+ = (𝑢+𝑟𝑒𝑔|Ω𝑝
, 𝑢+𝑟𝑒𝑔|Ω𝑛

) ∈ 𝑄 ≔ 𝐻 1
1/2(Ω𝑝) × 𝐻 1

1/2(Ω𝑛). (4.6)

For generic 𝑔(𝑦), we use the notation

𝑠𝑔(𝑥, 𝑦) ∶= 𝑔(𝑦)𝚂(𝑥). (4.7)

As noticed in the 1D example, when the singular coefficient 𝑔+ does not vanish, 𝑠𝑔+ does not
belong to the space 𝐻 1

1/2(Ω𝑝) × 𝐻 1
1/2(Ω𝑛), hence the notation 𝑠𝑔+ , with 𝑠 for “singular”.

Given 𝐮+ = (𝑢+𝑝 , 𝑢+𝑛 ) ∈ 𝐻 1
1/2(Ω𝑝) × 𝐻 1

1/2(Ω𝑛) and 𝑔+ ∈ 𝐻 1
𝑝𝑒𝑟(Σ) a solution of the system (4.5),

no transmission condition through Σ is imposed a priori between 𝑢+𝑝 and 𝑢+𝑛 . On the other hand,
the convergence assumption (4.4) contains a hidden transmission condition through Σ, as we will
see in chapter 6.

Remark 4.1.4. One could also examine a problem with a non-smooth sign-changing coefficient
𝛼. For example, 𝛼(𝑥) = sign(𝑥)|𝑥|𝛽 with 𝛽 > 0. Then, one could add some absorption and solve
− ((𝛼(𝑥) + 𝑖𝜈)𝑢𝜈′)′ = 0. Then, using [51, (15.6.1)], and the help of some formal computation

software, the solution writes 𝑢𝜈(𝑥) = 𝑥
𝑖𝜈𝐹 (1,

1
𝛽 ; 1 +

1
𝛽 ; −

sign(𝑥)|𝑥|𝛽

𝑖𝜈 ) where 𝐹 is the hypergeometric
function, see [51, (15.2.1)].
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Remark 4.1.5. It is unclear if we can use 𝐻 1
1/2(Ω) ≔ 𝐶∞𝑝𝑒𝑟 ,𝑦 (Ω)

‖⋅‖|𝛼 |1/2 . Indeed, it might contain
functions which are not distributions. Therefore, we use separate spaces on both side of the
interface, as suggested in [41].

4.2 The method from Nicolopoulos et al.

We now recall the main ingredients that were used by Nicolopoulos, Campos Pinto, et al. in [49,
50] to build a numerical approximation to problem (4.2), with its solution split into a regular and
a singular part. We emphasize that the derivation of the mathematical model is formal, cf. [49,
theorem 2], whereas we propose a mathematical derivation based on assumption 4.1.2. Also, a
stronger assumption on the singular part was used in [49], namely that 𝑔 ∈ 𝐻 2

𝑝𝑒𝑟(Σ), which has
strong consequences numerically, see §4.2.2.

4.2.1 Main ideas and formulation of the method

In order to explain the method of [49], let us introduce the following functions, which we describe
as “singularities with absorption”

𝑠𝜈𝑔(𝑥, 𝑦) ≔ 𝑔(𝑦) log (𝑥 + 𝑖𝜈
𝚛(𝑦)

) with 𝜈 > 0, 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟(Σ). (4.8)

The absorption parameter scaled by 1/𝚛(𝑦) will ensure some nice convergence properties on
second order derivatives. We also introduce the weighted 𝐿2(Σ)-norm

‖𝑔‖𝚛 ∶= (∫
Σ
|𝑔(𝑦)|2𝚛(𝑦)𝑑𝑦)

1/2
(4.9)

and its associated inner product is denoted by (⋅, ⋅)𝚛. Note that for all 𝑔 ∈ 𝐿2(Σ), it is easily checked
that 𝑠𝜈𝑔 → 𝑠𝑔 in 𝐿2(Ω) as 𝜈 → 0+. One needs the following three technical results, whose proofs
are given in section 6.2.1.

Lemma 4.2.1. Given 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟(Σ), the following limits hold in 𝐿2(Ω) as 𝜈 → 0+:

𝑠𝜈𝑔 → 𝑠𝑔, 𝜕𝑦𝑠𝜈𝑔 → 𝜕𝑦𝑠𝑔,

(𝛼 + 𝑖𝜈)𝜕𝑥𝑠𝜈𝑔 → 𝛼𝜕𝑥𝑠𝑔, 𝜕𝑥((𝛼 + 𝑖𝜈)𝜕𝑥𝑠𝜈𝑔) → 𝜕𝑥(𝛼𝜕𝑥𝑠𝑔).

Let 𝜑 be a truncation function satisfying

Definition 4.2.2. Given 𝜑1 ∈ 𝐶10 ((−𝑎, 𝑎); ℝ) and 𝜑1 = 1 in the vicinity of 𝑥 = 0, let 𝜑(𝑥, 𝑦) = 𝜑1(𝑥).

This function is used to localize the contribution near the interface. The method of [49] relies
on the observation that, for 𝑔 ≠ 0, the singular ansatz 𝑠𝑔 does not belong to 𝑄.

Lemma 4.2.3. Let 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟(Σ) and a truncation function 𝜑 as in definition 4.2.2. Then the following

limit holds:
lim
𝜈→0+∫Ω

𝜈|∇𝑠𝜈𝑔|2𝜑 d𝐱 = 𝜋 ‖𝑔‖2𝚛 > 0.
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Physically, the above identity is related to the plasma heating [26, 50]. Let 𝑢𝜈 ∈ 𝐻 1(Ω) be
the unique solution of (4.3). By assumption 4.1.2, 𝑢𝜈 → 𝑢+𝑟𝑒𝑔 + 𝑠+𝑔 in 𝐿2(Ω), as 𝜈 → 0+. We then
split 𝑢𝜈 = 𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+ ; evidently, 𝑠

𝜈
𝑔+ → 𝑠+𝑔 in 𝐿2(Ω), and 𝑢𝜈𝑟𝑒𝑔 → 𝑢+𝑟𝑒𝑔 in 𝐿2(Ω). Recall that 𝑢+𝑟𝑒𝑔 is

identified with a pair of functions 𝐮+ = (𝑢+𝑝 , 𝑢+𝑛 ).

Lemma 4.2.4. Let (𝑢𝜈)𝜈>0 be a family governed by (4.3) fulfilling assumption 4.1.2. Then,

lim
𝜈→0+∫Ω

𝜈 |∇𝑢𝜈𝑟𝑒𝑔|
2
𝜑 d𝐱 = 0. (4.10)

The above observations serve as a basis to construct a functional tominimize; thisminimization
procedure will yield a desired variational formulation. As a matter of fact, if we consider the
function 𝑠𝜈ℎ, with ℎ ∈ 𝐻 2

𝑝𝑒𝑟(Σ) being an artificial variable: we observe that

∫
Ω
𝜈 |∇ (𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+−ℎ)|

2
𝜑 d𝐱

goes to 0 as 𝜈 goes to 0 if ℎ = 𝑔+. The difficulty is now to link this result with the problem at hand.
Interestingly, one may rewrite the above integral as

∫
Ω
𝜈 |∇ (𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+−ℎ)|

2
𝜑 d𝐱 = Im (∫

Ω
(𝛼(𝑥, 𝑦) + 𝑖𝜈) |∇ (𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+ − 𝑠𝜈ℎ)|

2
𝜑 d𝐱) .

Hence, if we define the following energy functional:

𝒥 𝜈(𝑢𝜈𝑟𝑒𝑔, 𝑔+, ℎ) ≔ Im (∫
Ω
(𝛼(𝑥, 𝑦) + 𝑖𝜈) |∇ (𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+ − 𝑠𝜈ℎ)|

2
𝜑 d𝐱) , (4.11)

we have that 𝒥 𝜈(𝑢𝜈𝑟𝑒𝑔, 𝑔+, ℎ) converges to the limit 𝜋 ‖𝑔+ − ℎ‖2𝚛 when 𝜈 → 0+. We obviously
observe that lim𝜈→0+ 𝒥 𝜈(𝑢𝜈𝑟𝑒𝑔, 𝑔+, 𝑔+) = 0. Hence, the limit of (𝑢𝜈𝑟𝑒𝑔, 𝑔+, 𝑔+) should be a solution
to a minimization problem expressed variationally. Introducing 𝑉 (2) ≔ 𝑄 × 𝐻 2

𝑝𝑒𝑟(Σ) × 𝐻 2
𝑝𝑒𝑟(Σ), we

find that the limit is governed by the following mixed variational formulation (see chapter 6 for a
complete derivation):

Find (𝐮, 𝑔, ℎ) ∈ 𝑉 (2) and 𝝀 ∈ 𝑄 such that

{
𝑎(2) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) − 𝑏(2) ((𝐯, 𝑘, 𝑙), 𝝀) = 0, ∀(𝐯, 𝑘, 𝑙) ∈ 𝑉 (2),

𝑏(2) ((𝐮, 𝑔, ℎ), 𝝁) = ℓ(𝝁), ∀𝝁 ∈ 𝑄.

(4.12)

First, the form 𝑎(2) ∶ 𝑉 (2) × 𝑉 (2) → ℂ can be recast as

𝑎(2) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) ≔ ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝛼(𝑢𝑗 + 𝑠𝑔−ℎ)𝜕𝑥(𝑣𝑗 + 𝑠𝑘−𝑙)𝜕𝑥𝜑d𝐱

− ∫
Ω𝑗

𝛼(𝑣𝑗 + 𝑠𝑘−𝑙)𝜕𝑥(𝑢𝑗 + 𝑠𝑔−ℎ)𝜕𝑥𝜑d𝐱

− ∫
Ω𝑗

(− div 𝛼∇𝑠ℎ − 𝜔2𝑠ℎ) (𝑣𝑗 + 𝑠𝑘−𝑙)𝜑d𝐱

+ ∫
Ω𝑗

(− div 𝛼∇𝑠𝑙 − 𝜔2𝑠𝑙)(𝑢𝑗 + 𝑠𝑔−ℎ)𝜑d𝐱.

(4.13)

The sesquilinear form 𝑏(2) ∶ 𝑉 (2) × 𝑄 → ℂ is, in its turn, given by

𝑏(2) ((𝐮, 𝑔, ℎ), 𝐯) = 𝑏(2)𝑟𝑒𝑔(𝐮, 𝐯) + 𝑏(2)𝑠𝑖𝑛𝑔(𝑔, 𝐯), (4.14)
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where, for all 𝐮, 𝐯 ∈ 𝑄, 𝑔 ∈ 𝐻 2
𝑝𝑒𝑟(Σ)

𝑏(2)𝑟𝑒𝑔(𝐮, 𝐯) ≔ ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

(𝛼∇𝑢𝑗 ⋅ ∇𝑣𝑗 − 𝜔2𝑢𝑗𝑣𝑗) d𝐱 + ∫
Γ𝑗
𝑖𝜆𝑢𝑗𝑣𝑗ds, (4.15)

𝑏(2)𝑠𝑖𝑛𝑔(𝑔, 𝐯) ≔ ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

(− div(𝛼∇𝑠𝑔) − 𝜔2𝑠𝑔) 𝑣𝑗d𝐱 + ∫
Γ𝑗
(𝛼𝜕𝑛𝑠𝑔 + 𝑖𝜆𝑠𝑔)𝑣𝑗ds. (4.16)

Finally, the antilinear form ℓ(2)(𝝁) is defined as

ℓ(2)(𝝁) = ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑓 𝝁 ds.

In order to guarantee the well-posedness, two stabilization terms are added to (4.12). More
precisely, one considers

Find (𝐮, 𝑔, ℎ) ∈ 𝑉 (2) and 𝝀 ∈ 𝑄 such that

{
𝑎(2)𝜌,𝜇 ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) − 𝑏(2) ((𝐯, 𝑘, 𝑙), 𝝀) = 0, ∀(𝐯, 𝑘, 𝑙) ∈ 𝑉 (2),

𝑏(2) ((𝐮, 𝑔, ℎ), 𝝁) = ℓ(2)(𝝁), ∀𝝁 ∈ 𝑄,

(4.17)

where

𝑎(2)𝜌,𝜇 ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) = 𝑎(2) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) + 𝑖 (−𝜌(𝑔, 𝑘)𝐻 2(Σ) + 𝜇(𝜕𝑦𝑦ℎ, 𝜕𝑦𝑦𝑙)𝐿2(Σ)) ,

with 𝜌, 𝜇 > 0. The form of the stabilization terms follows from the 𝑇-coercivity requirements on
the first sesquilinear form 𝑎(2), see [18] for the definition of the 𝑇-coercivity. It is shown in [49,
Theorem 16] that for 𝜌, 𝜇 > 0, and 𝑓 ∈ 𝐿2(Γ𝑝 ∪ Γ𝑛), the problem (4.17) is well-posed. However, up
to our knowledge, there exists no proof that the solution to (4.17) is a limiting absorption solution
of the original problem.

4.2.2 Numerical experiments and comments

In [49], a conforming discretization of (4.17) was proposed, with 𝑉 (2)
ℎ1,ℎ2 = 𝑄ℎ1 × 𝐻

2
ℎ2 × 𝐻

2
ℎ2 ,

𝑄ℎ1 = {𝑣ℎ1 ∈ 𝑄 ∶ 𝑣ℎ1 |𝐾 ∈ 𝑃1(𝐾), for all 𝐾 ∈ 𝒯 Ω
ℎ1 },

𝐻 2
ℎ2 = {𝑝ℎ2 ∈ 𝐻 2

𝑝𝑒𝑟(Σ) ∶ 𝑝ℎ2 |𝐾 ∈ 𝐻𝑚(𝐾), for all 𝐾 ∈ 𝒯 Σ
ℎ2},

where 𝐻𝑚(𝐾) is Hermite finite element of order 𝑚, 𝒯 Ω
ℎ1 is a triangulation of Ω with meshsize ℎ1

that is conforming with respect to the interface Σ (for all 𝐾 ∈ 𝒯ℎ1 , int(𝐾) ∩ Σ = ∅), and 𝒯 Σ
ℎ2 is a

triangulation of Σwith meshsize ℎ2. Notice that the restriction to Ω𝑝 (respectively Ω𝑛) of elements
of 𝑄ℎ1 belongs to 𝐻 1(Ω𝑝) (resp. 𝐻 1(Ω𝑛)). On the other hand, there is no matching condition at
the interface for elements of 𝑄ℎ1 .
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The discretization of (4.17) leads to the linear system 𝘼𝘜ℎ1,ℎ2 = 𝘓 where:

𝘼 = (
𝘼(2) −𝘽(2)†

𝘽(2) 0
) ,

𝘼(2) =

⎛
⎜
⎜
⎜
⎜
⎝

𝘼𝑝 0 −𝘼𝑝,Σ𝑔
† −𝘼𝑝,Σℎ

†

0 𝘼𝑛 −𝘼𝑛,Σ𝑔
† −𝘼𝑛,Σℎ

†

𝘼𝑝,Σ𝑔 𝘼𝑛,Σ𝑔 𝘼Σ𝑔 −𝘼Σ𝑔,Σℎ
†

𝘼𝑝,Σℎ 𝘼𝑛,Σℎ 𝘼Σ𝑔,Σℎ 𝘼Σℎ

⎞
⎟
⎟
⎟
⎟
⎠

, 𝘽(2) = (
𝘽𝑝 0 𝘽Σ𝑔,𝑝 0

0 𝘽𝑛 𝘽Σ𝑔,𝑛 0
) ,

𝘜ℎ1,ℎ2 = (𝘜𝑝,ℎ1 𝘜𝑛,ℎ1 𝘎ℎ2 𝘏ℎ2 Λ𝑝,ℎ1 Λ𝑛,ℎ2)
⊤
, 𝘓 = (0 0 0 0 𝘓𝑝 𝘓𝑛)

⊤
,

where the stars stand for minus transpose conjugate, so that 𝘼 = −𝘼†, 𝘼(2) = −𝘼(2)†. This holds
because the sesquilinear form 𝑎(2)𝜌,𝜇 is anti-hermitian1.

In the original paper [49], the numerical experiments were done for a single discretization.
Structured meshes were used for both regular and singular parts, with ℎ2 = 4ℎ1. In particular, the
question of the convergence of the discrete solution to the continuous one was not addressed.
The goal of this section is to provide insight into this question, by letting ℎ1 vary and keeping
ℎ2 = 4ℎ1.

We consider the case 𝛼(𝑥, 𝑦) = 𝑥, 𝜔 = 0 and perform two experiments with 𝐿 = 2 on the
domain Ω = (−1, 1) × (−1, 1) with known exact solutions. We choose the boundary data so that,
in the first case, the exact solution is purely regular and equal to 𝑢(𝑥, 𝑦) = 1, and in the second
case it is given by 𝑢(𝑥, 𝑦) = log |𝑥 | + 𝑖𝜋𝟙𝑥<0. In the first case 𝑔(𝑦) = 0, while in the second case,
there is a non-zero singular part 𝑠𝑔(𝑥, 𝑦) with 𝑔(𝑦) = 1. Notice that the stabilization parameters
𝜌, 𝜇 are taken equal 𝜌 = 𝜇 = 10−5.

We use the code provided by A. Nicolopoulos written in FreeFem++ [32]. The amplitude of
the singular part 𝑔 was discretized with the 2D HCT finite elements penalized along the normal
direction, i.e., we add to 𝘼Σ𝑔 and 𝘼Σℎ the corresponding term to the discretization of the following
sesquilinear form, with a coefficient 𝑍 > 0 large enough:

𝑍 𝑖 ∫
Ω
𝜕𝑥𝑔 𝜕𝑥𝑘 d𝐱.

Notice that results given below may vary depending on the mesh used to discretize the singular
part 𝑔.

We denote by 𝑒𝐿2(𝐮), resp. 𝑒𝑄(𝐮), the relative error of the regular part in 𝐿2(Ω)-norm, resp. in
‖⋅‖𝑄 norm. And we denote by 𝑒𝐿2(𝑔) the relative error of the singular coefficient in 𝐿2(Σ)-norm.
Note that, when measuring volume errors, we do not take into account the cells that touch
the interface because we observed that the errors were strongly localized in these cells. This
phenomenon is clearly linked to the singular behavior of 𝛼 near the interface.

Although 𝑢 = 1 belongs to the discrete space, the computed solution does not seem to
converge, see figure 4.2a on a log-log scale. This phenomenon happens regardless of the value
of the stabilization parameters 𝜌, 𝜇 from 10−2 to 10−7. On the other hand, the results with
𝑢 = log |𝑥 | + 𝑖𝜋𝟙𝑥<0 are promising in the sense that the relative error is small, although it does
not converge; see Figure 4.2b.

1A sesquilinear form 𝑏 ∶ 𝑉 × 𝑉 is anti-hermitian if 𝑏(𝑢, 𝑣) = −𝑏(𝑣 , 𝑢).
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(a) 𝑢 = 1.
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(b) 𝑢 = log |𝑥 | + 𝑖𝜋𝟙𝑥<0.

Figure 4.2: Relative errors with structured meshes for regular and singular parts.

These experiments seem to indicate that the numerical method of [49] does not converge
numerically. We do not know whether the source of the instability is intrinsic to the numerical
variational formulation itself, or is due to the penalization of the HCT elements in the normal
direction, used in the implementation. In this manuscript, we will not dwell on the precise reason
for this instability. Instead, we propose in chapter 6 an alternative method.
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5.1 Problem setting and definitions

Let Ω = (−1, 1) × (0, 𝐿), with the notations of Chapter 4. The aim of this chapter is the study of
the problem

|
|
|
|
|
|
|
|

find 𝑢 such that

− div(𝛼∇𝑢) − 𝜔2𝑢 = 𝑓Ω in Ω,

𝑢 = 0 on Γ𝑛 ∪ Γ𝑝,

𝑢(𝑥, 0) = 𝑢(𝑥, 𝐿), (𝛼𝜕𝑦) 𝑢(𝑥, 0) = (𝛼𝜕𝑦) 𝑢(𝑥, 𝐿), 𝑥 ∈ (−1, 1),

(5.1)

where 𝑓Ω ∈ 𝐿2(Ω). Finding desirable properties of 𝑓Ω from which the regularity of solutions can
be inferred a priori is actually one of the issues of this chapter.

Therefore, the method used below consists in decomposing the solution 𝑢 into an appropriate
function basis. In order to find the appropriate function basis, we also formulate the following
assumption on the pattern of 𝛼.

Assumption 5.1.1. Given 𝚛(𝑦) ∈ 𝒞 1
𝑝𝑒𝑟 ([0, 𝐿] ; (0, +∞)), the function 𝛼 can be written as 𝛼(𝑥, 𝑦) =

𝚛(𝑦)𝑥.
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The interface in the sense of Chapter 4 is thus Σ = {0} × [0, 𝐿). Moreover, we divide the
domain into two parts Ω𝑝 = (0, 1) × (0, 𝐿) and Ω𝑛 = (−1, 0) × (0, 𝐿). Aside from this assumption,
we have switched from inhomogeneous Robin’s boundary conditions to homogeneous Dirichlet’s
boundary conditions. This change is not restrictive. Indeed, given 𝑢 the solution to the problem
with Robin’s boundary conditions, it is assumed 𝐻 1 away of the interface Σ. Therefore, it is also
a solution to the problem with Dirichlet’s boundary conditions formulated on a subset of the
original domain and the subset would still contain the interface. This modification simplifies the
computations and enable us to concentrate on the behavior of the problem near the interface.
Besides, homogeneous Dirichlet’s boundary conditions are not restrictive since it is always
possible to lift these boundary conditions. Then, such a lifting is taken into account into the
volume source term and the boundary conditions become homogeneous. It is always possible to
construct lifting whose support does not intersect the interface.

Indeed, notice the appearance of the volume source term 𝑓Ω, in comparison with Chapter 4.
Since this source term may induce a behavior of the solution 𝑢 “more” singular than the expected
logarithmic plus jump singularity, the influence of the source term will be carefully examined
throughout this chapter. Up to our knowledge, only vanishing source termwith non-homogeneous
boundary conditions where considered in the study of lower hybrid resonance. As noticed in the
previous paragraph, such boundary conditions can be modeled by a source term with a disjoint
support from the interface.

This chapter begins with a precise explicit description of the solutions of the problem. Then,
since the computations are explicit, basic regularity properties are studied. Finally, the limiting
absorption principle is proved. The argument is developed only for 𝜔 = 0, even though the same
method also applies for 𝜔 ≠ 0. In the view of the method used, the results obtained are obviously
valid in any dimension ℝ𝑑+1, assuming the interface is a 𝑑-dimensional manifold.

Let us outline the method used. If 𝚛(𝑦) = 1, then we solve

− div (𝑥∇𝑢) = 𝑓 in Ω.

We can consider the Fourier’s expansion of 𝑢 with respect to the variable 𝑦, so that we can
decompose 𝑢(𝑥, 𝑦) = ∑𝑘∈ℤ 𝑢𝑘(𝑥) exp (

2𝑖𝑘𝜋𝑦
𝐿 ). Then one can derive an equation for each 𝑢𝑘(𝑥),

solve it, etc…This process leads to an explicit formula ready to be studied.

In a general case, 𝚛(𝑦) is not a constant. Therefore, one has to decompose 𝑢(𝑥, 𝑦) on a basis
that is adapted to 𝚛(𝑦) ∈ 𝒞 1

𝑝𝑒𝑟 ([0, 𝐿]; ℝ+∗ ). To that aim, we define the following complex Hilbert
space 𝐿2𝚛(0, 𝐿) ≡ 𝐿2(0, 𝐿) with its inner product

(𝑢, 𝑣)𝚛 = ∫
𝐿

0
𝑢(𝑦)𝑣(𝑦)𝚛(𝑦)dy,

and the following functions, given by the spectral theorem.

Definition 5.1.2. Let (𝜓𝑘)𝑘∈ℕ be the eigenvectors of the operator −𝚛−1𝜕𝑦 (𝚛𝜕𝑦⋅) on (0, 𝐿) with
periodic boundary conditions, such that (𝜓𝑘)𝑘∈ℕ constitute a normalized orthogonal Hilbert
basis of 𝐿2𝚛(0, 𝐿). Each eigenvector 𝜓𝑘 is associated to a real positive eigenvalue 𝜆2𝑘 such that the
sequence (𝜆𝑘)𝑘≥0 increases and lim𝑘→+∞ 𝜆𝑘 = +∞. In particular 𝜆0 = 0 and 𝜓0 is constant.
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If 𝑢 ∈ 𝐿2𝚛(0, 𝐿), then we can decompose it as 𝑢(𝑦) = ∑𝑘∈ℕ 𝑢𝑘𝜓𝑘(𝑦). Parseval’s identity ensures
that

‖𝑢‖2𝐿2𝚛(0,𝐿) = ∑
𝑘∈ℕ

|𝑢𝑘|2.

Lemma 5.1.3. Let 𝑢 ∈ 𝐿2𝚛(0, 𝐿) be such that 𝜕𝑦𝑢 ∈ 𝐿2𝚛(0, 𝐿). Then

‖𝜕𝑦𝑢‖
2
𝐿2𝚛(0,𝐿)

= ∑
𝑘∈ℕ

|𝜆𝑘𝑢𝑘|2.

Proof. By definition, for all 𝑘 ∈ ℕ, the eigenvector 𝜓𝑘 verifies

(𝜕𝑦𝜓𝑘, 𝜕𝑦𝑣)𝐿2𝚛(0,𝐿)
= 𝜆2𝑘 (𝜓𝑘, 𝑣)𝐿2𝚛(0,𝐿) , ∀𝑣 ∈ 𝐻 1

𝑝𝑒𝑟(0, 1).

On one hand, this yields ‖𝜕𝑦𝜓𝑘‖
2
𝐿2𝚛(0,𝐿)

= 𝜆2𝑘 ‖𝜓𝑘‖
2
𝐿2𝚛(0,𝐿) = 𝜆2𝑘 because (𝜓𝑘)𝑘 are normalized, and on

the other hand, (𝜕𝑦𝜓𝑘, 𝜕𝑦𝜓𝑙)𝐿2𝚛(0,𝐿)
= 0, for 𝑘 ≠ 𝑙, because (𝜓𝑘)𝑘 are orthogonal. Thus, we have that

‖𝜕𝑦𝑢‖
2
𝐿2𝚛(0,𝐿)

= ∑
𝑘∈ℕ

|𝑢𝑘|2 ‖𝜕𝑦𝜓𝑘‖
2
𝐿2𝚛(0,𝐿)

= ∑
𝑘∈ℕ

|𝜆𝑘𝑢𝑘|2.

From this point, we define the following fractional Sobolev spaces for 𝑠 ≥ 0 with their
associated norms:

𝐻 𝑠
𝚛(0, 𝐿) ≔ {𝑢 ∈ 𝐿2𝚛(0, 𝐿) ∶ ∑

𝑘∈ℕ
|𝜆𝑠𝑘𝑢𝑘|

2 < ∞} , ‖𝑢‖2𝐻 𝑠
𝚛
= ∑

𝑘∈ℕ
(1 + 𝜆2𝑘)

𝑠 |𝑢𝑘|2.

Finally, we define the following classical Sobolev space on Ω:

𝐻 1
𝚛 (Ω) = {𝑢 ∈ 𝐿2𝚛 (Ω) ∶ ∇𝑢 ∈ 𝐿2𝚛(Ω)} , ‖𝑢‖2𝐻 1

𝚛 (Ω) = ∫
Ω
[|𝑢|2 + |∇𝑢|2] 𝚛(𝑦)d𝐱.

Then, it is naturally connected with 𝐻 1
𝚛 (0, 𝐿), so that we can decompose 𝑢 ∈ 𝐻 1 (Ω, 𝚛) as 𝑢(𝑥, 𝑦) =

∑𝑘∈ℕ 𝑢𝑘(𝑥)𝜓𝑘(𝑦). Moreover, this provides the following equivalent norm:

‖𝑢‖2𝐻 1(Ω,𝚛) = ∑
𝑘∈ℕ

[(1 + 𝜆2𝑘) ‖𝑢𝑘‖
2
𝐿2(−1,1) + ‖𝜕𝑥𝑢𝑘‖

2
𝐿2(−1,1)] .

5.2 Limiting absorption solution

Recall that we focus on the case 𝜔 = 0. It has been observed in [50] that the equation of problem
(5.1) with 𝚛(𝑦) = 1 and 𝐿 = 2𝜋 can be solved using the classical Fourier’s expansion. This leads to
solve the very well-known modified Bessel equation:

−𝑥𝜕𝑥 (𝑥𝜕𝑥𝑢𝑘) + (𝑘𝑥)2𝑢𝑘 = 𝑥𝑓𝑘. (5.2)

A feature of this ODE is that it is singular at the point 𝑥 = 0. A general solution of the homogeneous
equation can be written as

𝑢𝑘(𝑥) = {
𝑎𝑘,+𝐼0(𝑘𝑥) + 𝑏𝑘,+𝐾0(𝑘𝑥) if 𝑥 > 0,

𝑎𝑘,−𝐼0(𝑘𝑥) + 𝑏𝑘,−𝐾0(𝑘𝑥) if 𝑥 < 0.
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However, the two boundary conditions do not provide enough equations to close the problem,
i.e., to completely determine the coefficient 𝑎𝑘,± and 𝑏𝑘,±. Thus, the aim of this part is to derive a
new equation in order to “glue” together the solutions on either side of the point 𝑥 = 0. Like in
chapter 4, we proceed by introducing small absorption and then letting this absorption tend to 0.
This approach is common in literature, for example Campos Pinto and Després used this method
in [14] to extract variational relations.

Therefore, we look for a solution 𝑢 of (5.1) such that it is also the limiting absorption solution,
i.e., 𝑢 the limit in some sense of (𝑢𝜈)𝜈>0 as 𝜈 → 0+ and 𝑢𝜈 solves the following problem.

|
|
|
|
|
|
|
|

Find 𝑢𝜈 such that

− div (𝚛(𝑦) (𝑥 + 𝑖𝜈) ∇𝑢𝜈) = 𝚛(𝑦)𝑓 in Ω,

𝑢𝜈 = 0 on Γ𝑛 ∪ Γ𝑝,

𝑢𝜈(𝑥, 0) = 𝑢𝜈(𝑥, 𝐿), (𝚛(𝑦) (𝑥 + 𝑖𝜈) 𝜕𝑦) 𝑢𝜈(𝑥, 0) = (𝚛(𝑦) (𝑥 + 𝑖𝜈) 𝜕𝑦) 𝑢𝜈(𝑥, 𝐿), 𝑥 ∈ (−1, 1).

(5.3)

Notice the change of source term 𝑓 = 𝑓Ω/𝚛 ∈ 𝐿2(Ω), in order to simplify the computations below.
One can prove via the Lax-Milgram theorem that this problem is well-posed in 𝐻 1(Ω).

5.2.1 Solution with absorption

The first result of this part consists in a precise description of the solution with a small absorption
𝜈 > 0.

Proposition 5.2.1. Let 𝑢𝜈 ∈ 𝐻 1(Ω) be the unique solution of the problem with absorption (5.3).
Then, there exist (𝑢𝜈𝑘)𝑘 ⊂ 𝐻 1(−1, 1) be such that 𝑢𝜈(𝑥, 𝑦) = ∑𝑘∈ℕ 𝑢𝜈𝑘(𝑥)𝜓𝑘(𝑦) with

𝑢𝜈0(𝑥) = 𝑎𝜈0 + 𝑏𝜈0 log (𝑥 + 𝑖𝜈) + ∫
𝑥

1
log (𝑡 + 𝑖𝜈) 𝑓0(𝑡)dt + log (𝑥 + 𝑖𝜈) ∫

𝑥

0
𝑓0(𝑡)dt,

and, for 𝑘 ≥ 1,

𝑢𝜈𝑘(𝑥) = 𝑎𝜈𝑘𝐼0 (𝜆𝑘 (𝑥 + 𝑖𝜈)) − 𝑏𝜈𝑘𝐾0 (𝜆𝑘 (𝑥 + 𝑖𝜈))

− 𝐼0 (𝜆𝑘 (𝑥 + 𝑖𝜈)) ∫
𝑥

1
𝐾0 (𝜆𝑘 (𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt + 𝐾0 (𝜆𝑘 (𝑥 + 𝑖𝜈)) ∫

𝑥

0
𝐼0 (𝜆𝑘 (𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt,

where 𝑎𝜈𝑘 and 𝑏
𝜈
𝑘 are given below, see (5.8), (5.9), (5.10) and (5.11).

Proof. Easy manipulations on the problem (5.3) allow us to rewrite it under the form:

−𝜕𝑥 ((𝑥 + 𝑖𝜈) 𝜕𝑥𝑢𝜈) −
𝑥 + 𝑖𝜈
𝚛

𝜕𝑦(𝚛𝜕𝑦𝑢𝜈) = 𝑓 . (5.4)

Since the eigenvectors (𝜓𝑘)𝑘 of the operator −𝚛−1𝜕𝑦(𝚛𝜕𝑦⋅) constitute a Hilbert basis of 𝐿2𝚛(0, 𝐿), we
are allowed to decompose 𝑢𝜈 ∈ 𝐻 1

𝚛 (Ω) and 𝑓 ∈ 𝐿2𝚛(Ω) as

𝑢𝜈(𝑥, 𝑦) = ∑
𝑘∈ℕ

𝑢𝜈𝑘(𝑥)𝜓𝑘(𝑦), 𝑓 (𝑥, 𝑦) = ∑
𝑘∈ℕ

𝑓𝑘(𝑥)𝜓𝑘(𝑦).

Then, the equation (5.4) can be written as a system of ODE parametrized by 𝑘 ∈ ℕ:

|
− 𝜕𝑥 ((𝑥 + 𝑖𝜈) 𝜕𝑥𝑢𝜈𝑘) + 𝜆2𝑘 (𝑥 + 𝑖𝜈) 𝑢𝜈𝑘 = 𝑓𝑘, in (−1, 1),

𝑢𝜈𝑘(1) = 𝑢𝜈𝑘(−1) = 0.
(5.5)
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The general solution of these equations is written as

𝑢𝜈𝑘(𝑥) = 𝑢𝜈,0𝑘 (𝑥) + 𝑢̂𝜈𝑘(𝑥), with 𝑢𝜈,0𝑘 (𝑥) = 𝑎𝜈𝑘𝑢
𝜈,1
𝑘 (𝑥) + 𝑏𝜈𝑘𝑢

𝜈,2
𝑘 (𝑥), (5.6)

where 𝑢𝜈,0𝑘 is a solution of the homogeneous equation and 𝑢̂𝜈𝑘 a particular solution. The solution
of the homogeneous equation is a linear combination of a fundamental pair of solutions 𝑢𝜈,1𝑘 and
𝑢𝜈,2𝑘 , and the coefficients 𝑎𝜈𝑘 and 𝑏𝜈𝑘 are computed using the boundary conditions. As a memento,
the Wronskian 𝒲{𝑢𝜈,1𝑘 , 𝑢𝜈,2𝑘 } of this pair of solutions can easily be computed (see [51, (1.13.5)]),
and the fundamental pair will be normalized so that

𝒲{𝑢𝜈,1𝑘 , 𝑢𝜈,2𝑘 } (𝑥) = 𝑢𝜈,1𝑘 (𝑥)𝜕𝑥𝑢
𝜈,2
𝑘 (𝑥) − 𝜕𝑥𝑢

𝜈,1
𝑘 (𝑥)𝑢𝜈,2𝑘 (𝑥) = 1

𝑥 + 𝑖𝜈
. (5.7)

With the change of variable 𝑧 = (𝑥 + 𝑖𝜈), (5.5) becomes a modified Bessel equation [51, §10.25]:

−𝑧𝜕𝑧 (𝑧𝜕𝑧𝑢𝑘) + (𝜆𝑘𝑧)
2 𝑢𝑘 = 𝑧𝑓𝑘.

Therefore, for 𝑘 ≥ 0, the basis (𝑢𝜈,1𝑘 , 𝑢𝜈,2𝑘 ) of solutions of the homogeneous equation associated to
(5.5) are

𝑢𝜈,10 (𝑥) = 1, 𝑢𝜈,20 (𝑥) = log(𝑥 + 𝑖𝜈), 𝑘 = 0,

𝑢𝜈,1𝑘 (𝑥) = 𝐼0 (𝜆𝑘 (𝑥 + 𝑖𝜈)) , 𝑢𝜈,2𝑘 (𝑥) = −𝐾0 (𝜆𝑘 (𝑥 + 𝑖𝜈)) , 𝑘 > 0.

One can consult [51, §10.25] for the definitions of the modified Bessel functions 𝐼0 and 𝐾0. We
consider here the principal value of 𝑧 ↦ log 𝑧 and 𝑧 ↦ 𝐾0(𝑧), with a branch cut at (−∞, 0]. The
Wronskian of the pairs is (5.7), see [51, (10.28.2)]. The computation of a particular solution uses
the variation of parameters method (see e.g., [51, (1.13.10)]). Then, particular solutions can simply
be written as

𝑢̂𝜈𝑘(𝑥) = 𝑢𝜈,1𝑘 (𝑥) ∫
𝑥

1

𝑢𝜈,2𝑘 (𝑡)

𝒲 {𝑢𝜈,1𝑘 , 𝑢𝜈,2𝑘 } (𝑡)
( 1
𝑡 + 𝑖𝜈

𝑓𝑘(𝑡)) dt − 𝑢𝜈,2𝑘 (𝑥) ∫
𝑥

0

𝑢𝜈,1𝑘 (𝑡)

𝒲 {𝑢𝜈,1𝑘 , 𝑢𝜈,2𝑘 } (𝑡)
( 1
𝑡 + 𝑖𝜈

𝑓𝑘(𝑡)) dt

= 𝑢𝜈,1𝑘 (𝑥) ∫
𝑥

1
𝑢𝜈,2𝑘 (𝑡)𝑓𝑘(𝑡)dt − 𝑢𝜈,2𝑘 (𝑥) ∫

𝑥

0
𝑢𝜈,1𝑘 (𝑡)𝑓𝑘(𝑡)dt,

where the value of the Wronskian (5.7) has been used. Next, using the homogeneous boundary
condition allows to compute the expected values of 𝑎𝜈𝑘 and 𝑏𝜈𝑘. In the case of 𝑘 = 0, we obtain that

𝑢𝜈0(𝑥) = 𝑎𝜈0 + 𝑏𝜈0 log (𝑥 + 𝑖𝜈) + ∫
𝑥

1
log (𝑡 + 𝑖𝜈) 𝑓0(𝑡)dt − log (𝑥 + 𝑖𝜈) ∫

𝑥

0
𝑓0(𝑡)dt,

𝑎𝜈0 =
log(1 + 𝑖𝜈)

Δ𝜈
0

∫
1

−1
[log(−1 + 𝑖𝜈) − log(𝑡 + 𝑖𝜈)] 𝑓0(𝑡)dt, (5.8)

𝑏𝜈0 =
1
Δ𝜈
0
∫
1

−1
log(𝑡 + 𝑖𝜈)𝑓0(𝑡)dt − ∫

0

−1
𝑓0(𝑡)dt −

log(1 + 𝑖𝜈)
Δ𝜈
0

∫
1

−1
𝑓0(𝑡)dt, (5.9)

Δ𝜈
0 = log(−1 + 𝑖𝜈) − log(1 + 𝑖𝜈) = 𝑖 (𝜋 − 2 arctan(𝜈)) .

Recall that in the case of 𝑘 ≥ 1, we have

𝑢𝜈𝑘(𝑥) = 𝑎𝜈𝑘𝐼0 (𝜆𝑘 (𝑥 + 𝑖𝜈)) − 𝑏𝜈𝑘𝐾0 (𝜆𝑘 (𝑥 + 𝑖𝜈))

− 𝐼0 (𝜆𝑘 (𝑥 + 𝑖𝜈)) ∫
𝑥

1
𝐾0 (𝜆𝑘 (𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt + 𝐾0 (𝜆𝑘 (𝑥 + 𝑖𝜈)) ∫

𝑥

0
𝐼0 (𝜆𝑘 (𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt
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Chapter 5. Fourier analysis

Like in the case 𝑘 = 0, the coefficients 𝑎𝜈𝑘 and 𝑏𝜈𝑘 are then computed using the Dirichlet conditions
at 𝑥 = ±1:

𝑎𝜈𝑘 =
𝐾0 (𝜆𝑘(1 + 𝑖𝜈)) 𝐾0 (𝜆𝑘(−1 + 𝑖𝜈))

Δ𝜈
𝑘

∫
1

−1
𝐼0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt

−
𝐾0 (𝜆𝑘(1 + 𝑖𝜈)) 𝐼0 (𝜆𝑘(−1 + 𝑖𝜈))

Δ𝜈
𝑘

∫
1

−1
𝐾0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt

(5.10)

𝑏𝜈𝑘 =
𝐾0 (𝜆𝑘(1 + 𝑖𝜈)) 𝐼0 (𝜆𝑘(−1 + 𝑖𝜈))

Δ𝜈
𝑘

∫
1

0
𝐼0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt

+
𝐼0 (𝜆𝑘(1 + 𝑖𝜈)) 𝐾0 (𝜆𝑘(−1 + 𝑖𝜈))

Δ𝜈
𝑘

∫
0

−1
𝐼0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt

−
𝐼0 (𝜆𝑘(1 + 𝑖𝜈)) 𝐼0 (𝜆𝑘(−1 + 𝑖𝜈))

Δ𝜈
𝑘

∫
1

−1
𝐾0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt

(5.11)

Δ𝜈
𝑘 = 𝐾0 (𝜆𝑘(1 + 𝑖𝜈)) 𝐼0 (𝜆𝑘(−1 + 𝑖𝜈)) − 𝐼0 (𝜆𝑘(1 + 𝑖𝜈)) 𝐾0 (𝜆𝑘(−1 + 𝑖𝜈)) (5.12)

Finally, it is easy to check that 𝑢𝜈𝑘 ∈ 𝐻 1(−1, 1) for all 𝑘 ∈ ℕ and 𝜈 > 0.

Remark 5.2.2. Since the functions 𝑢𝜈,1𝑘 are smooth for any values of 𝜈 ≥ 0, the integration bounds
of ∫𝑥 𝑢𝜈,2𝑘 𝑓𝑘dt do not really matter, and have been chosen in order to facilitate the computations.
On the other hand, lim𝜈→0+ 𝑢𝜈,2𝑘 is not smooth at the point 𝑥 = 0, which is the reason why the
lower bound of ∫𝑥 𝑢𝜈,1𝑘 𝑓𝑘dt has been chosen in order to compensate the singular behavior of 𝑢𝜈,2𝑘 .

Remark 5.2.3. With the identities from [51, §10.34], we have for any 𝑎, 𝑏 > 0,

𝐼0(−𝑎 + 𝑖𝑏) = 𝐼0(𝑎 + 𝑖𝑏), (5.13)

𝐾0(−𝑎 + 𝑖𝑏) = 𝐾0(𝑎 + 𝑖𝑏) − 𝑖𝜋𝐼0(𝑎 + 𝑖𝑏). (5.14)

Then these two identities can be used to reexpress 𝑎𝜈𝑘 and 𝑏𝜈𝑘 as:

𝑎𝜈𝑘 =
|𝐾0 (𝜆𝑘(1 + 𝑖𝜈))|2

Δ𝜈
𝑘

∫
1

−1
𝐼0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt

−
𝑖𝜋𝐾0 (𝜆𝑘(1 + 𝑖𝜈)) 𝐼0 (𝜆𝑘(1 + 𝑖𝜈))

Δ𝜈
𝑘

∫
1

0
𝐼0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt

−
𝐾0 (𝜆𝑘(1 + 𝑖𝜈)) 𝐼0 (𝜆𝑘(1 + 𝑖𝜈))

Δ𝜈
𝑘

(∫
0

−1
𝐾0 (𝜆𝑘(|𝑡 | + 𝑖𝜈))𝑓𝑘(𝑡)dt + ∫

1

0
𝐾0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt) ,

(5.15)

𝑏𝜈𝑘 =
𝐾0 (𝜆𝑘(1 + 𝑖𝜈)) 𝐼0 (𝜆𝑘(1 + 𝑖𝜈))

Δ𝜈
𝑘

∫
1

0
𝐼0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt

+
𝐾0 (𝜆𝑘(1 + 𝑖𝜈))𝐼0 (𝜆𝑘(1 + 𝑖𝜈))

Δ𝜈
𝑘

∫
0

−1
𝐼0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt

−
|𝐼0 (𝜆𝑘(1 + 𝑖𝜈))|2

Δ𝜈
𝑘

(∫
0

−1
𝐾0 (𝜆𝑘(|𝑡 | + 𝑖𝜈))𝑓𝑘(𝑡)dt + ∫

1

0
𝐾0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt)

(5.16)

Δ𝜈
𝑘 = 𝑖𝜋 |𝐼0 (𝜆𝑘(1 + 𝑖𝜈))|2 + 2𝑖 Im (𝐼0 (𝜆𝑘(1 + 𝑖𝜈))𝐾0 (𝜆𝑘(1 + 𝑖𝜈))) . (5.17)

In spite of their apparent sophistication, these formulas are easier to manipulate and estimate.
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5.2.2 Solution without absorption

Next, it is natural to define the limiting absorption solution at a point (𝑥, 𝑦) ∈ Ω ⧵ {0} × (0, 𝐿) as

𝑢+(𝑥, 𝑦) = ∑
𝑘∈ℕ

lim
𝜈→0+

𝑢𝜈𝑘(𝑥)𝜓𝑘(𝑦).

Then, as noticed earlier in this paragraph, 𝑢𝜈,2𝑘 does not converge toward a smooth solution. This
is due to the fact that 𝑧 ↦ log 𝑧 and 𝑧 ↦ 𝐾0(𝑧) are not entire functions ; the branch cut of their
principal values is (−∞, 0]. Therefore, as 𝜈 → 0+, the identity (5.14) is important to consider. In
particular, for 𝑥 ≠ 0, we have

lim
𝜈→0+

𝐾0(𝑥 + 𝑖𝜈) = 𝐾0(|𝑥|) − 𝑖𝜋𝐼0(𝑥)𝟙𝑥<0.

Then, it is natural to extend the definition of 𝐾0 to the negative real numbers as

𝐾0(𝑥) ≔ {
𝐾0(𝑥) if 𝑥 > 0,

𝐾0(−𝑥) − 𝑖𝜋𝐼0(𝑥) if 𝑥 < 0.
(5.18)

It is worth noting that this is the standard convention adopted by mathematical software. Another
useful property is the parity of 𝐼0: 𝐼0(𝑥) = 𝐼0(−𝑥) for all 𝑥 ∈ ℝ. Finally, 𝐼0(𝑥), 𝐾0(𝑥) > 0 for all
𝑥 > 0.

Lemma 5.2.4. The formal limit of (𝑢𝜈)𝜈>0 is 𝑢+ = ∑𝑘∈ℕ 𝑢+𝑘 𝜓𝑘 with

𝑢+0 (𝑥) = 𝑏+0 (log |𝑥 | + 𝑖𝜋𝟙𝑥<0) + ∫
𝑥

1
(log |𝑡 | + 𝑖𝜋𝟙𝑡<0) 𝑓0(𝑡)dt + (log |𝑥 | + 𝑖𝜋𝟙𝑥<0) ∫

𝑥

0
𝑓0(𝑡)dt,

𝑢+𝑘 (𝑥) = 𝑎+𝑘 𝐼0 (𝜆𝑘𝑥) − 𝑏+𝑘 𝐾0 (𝜆𝑘𝑥) − 𝐼0 (𝜆𝑘𝑥) ∫
𝑥

1
𝐾0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt + 𝐾0 (𝜆𝑘𝑥) ∫

𝑥

0
𝐼0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt,

and where

𝑏+0 = ∫
1

−1
log |𝑡 |𝑓0(𝑡)dt,

𝑎+𝑘 =
𝐾0(𝜆𝑘)2

𝑖𝜋𝐼0(𝜆𝑘)2
∫
1

−1
𝐼0(𝜆𝑘𝑡)𝑓𝑘(𝑡)dt −

𝐾0(𝜆𝑘)
𝑖𝜋𝐼0(𝜆𝑘) ∫

1

−1
𝐾0(|𝜆𝑘𝑡 |)𝑓𝑘(𝑡)dt −

𝐾0(𝜆𝑘)
𝐼0(𝜆𝑘) ∫

1

0
𝐼0(𝜆𝑘𝑡)𝑓𝑘(𝑡)dt,

𝑏+𝑘 =
𝐾0(𝜆𝑘)
𝑖𝜋𝐼0(𝜆𝑘) ∫

1

−1
𝐼0(𝜆𝑘𝑡)𝑓𝑘(𝑡)dt −

1
𝑖𝜋 ∫

1

−1
𝐾0(|𝜆𝑘𝑡 |)𝑓𝑘(𝑡)dt.

Proof. The formal limits are easily computed with the help of

lim
𝜈→0+

log(𝑥 + 𝑖𝜈) = log |𝑥 | + 𝑖𝜋𝟙𝑥<0, lim
𝜈→0+

𝐼0 (𝜆𝑘(𝑥 + 𝑖𝜈)) = 𝐼0 (𝜆𝑘𝑥) ,

lim
𝜈→0+

𝐾0 (𝜆𝑘(𝑥 + 𝑖𝜈)) = 𝐾0 (𝜆𝑘𝑥) = 𝐾0 (𝜆𝑘|𝑥 |) − 𝑖𝜋𝐼0(𝜆𝑘𝑥)𝟙𝑥<0,

The limits of 𝑎𝜈0 and 𝑏𝜈0 are straightforward, and the limits of 𝑎𝜈𝑘 and 𝑏𝜈𝑘 are computed using (5.15)
and (5.16) respectively.

In the view of the structure of 𝑢+𝑘 , we define

𝑢+,0𝑘 = {
𝑏+0 (log |𝑥 | + 𝑖𝜋𝟙𝑥<0) if 𝑘 = 0,

𝑎+𝑘 𝐼0 (𝜆𝑘𝑥) − 𝑏+𝑘 𝐾0 (𝜆𝑘𝑥) if 𝑘 ≥ 1,
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and

𝑢̂+𝑘 =
⎧⎪
⎨⎪
⎩

∫
𝑥

1
(log |𝑡 | + 𝑖𝜋𝟙𝑡<0) 𝑓0(𝑡)dt + (log |𝑥 | + 𝑖𝜋𝟙𝑥<0) ∫

𝑥

0
𝑓0(𝑡)dt if 𝑘 = 0,

−𝐼0 (𝜆𝑘𝑥) ∫
𝑥

1
𝐾0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt + 𝐾0 (𝜆𝑘𝑥) ∫

𝑥

0
𝐼0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt if 𝑘 ≥ 1,

so that 𝑢+𝑘 = 𝑢+,0𝑘 + 𝑢̂+𝑘 . It is easy to check that 𝑢+,0𝑘 is a solution of the homogeneous modified
Bessel equation (5.2) modulo the change of variables, and 𝑢̂+𝑘 is a particular solution of the same
equation. This particular solution satisfies the following proposition.

Proposition 5.2.5. 𝑢+ ∈ 𝐿2𝚛(Ω) and 𝜕𝑦𝑢+ ∈ 𝐿2𝚛(Ω).

This proposition relies on the following lemmas based on the asymptotics of modified Bessel
functions.

Lemma 5.2.6 ([51, (10.25.3), §10.30]). The modified Bessel functions satisfies

𝐼0(𝑧) ∼
𝑧→0

1 𝐾0(𝑧) ∼
𝑧→0

− log(𝑧)

𝐼0(𝑧) ∼
|𝑧|→+∞

𝑒𝑧

√2𝜋𝑧
𝐾0(𝑧) ∼

|𝑧|→+∞ √
𝜋
2𝑧
𝑒−𝑧,

for | arg 𝑧| < 𝜋/2 − 𝛿, for any 𝛿 > 0 arbitrary small.

Then, the following lemma allows us to estimate the integrals and coefficients 𝑎+𝑘 , 𝑏
+
𝑘 that are

involved in 𝑢+𝑘 .

Lemma 5.2.7. Let 𝑓 ∈ 𝐿2(0, 1) and 𝑘 ≥ 1. For all 𝑥 ∈ (0, 1) such that 0 ≤ 𝜆𝑘𝑥 ≤ 1, we have

|∫
𝑥

0
𝐼0(𝜆𝑘𝑡)𝑓 (𝑡)dt| = 𝒪 (√𝑥 ‖𝑓‖𝐿2(0,1)) , |∫

1

𝑥
𝐾0(𝜆𝑘𝑡)𝑓 (𝑡)dt| = 𝒪 (

‖𝑓‖𝐿2(0,1)

√𝜆𝑘
) .

For all 𝑥 ∈ (0, 1) such that 𝜆𝑘𝑥 ≥ 1, we have

|∫
𝑥

0
𝐼0(𝜆𝑘𝑡)𝑓 (𝑡)dt| = 𝒪 ( 𝑒𝜆𝑘𝑥

𝜆𝑘√𝑥
‖𝑓‖𝐿2(0,1)) , |∫

1

𝑥
𝐾0(𝜆𝑘𝑡)𝑓 (𝑡)dt| = 𝒪 (𝑒

−𝜆𝑘𝑥

𝜆𝑘√𝑥
‖𝑓‖𝐿2(0,1)) .

Proof. In what follows, 𝑎 ≲ 𝑏 means that there exist a constant 𝐶 > 0 independent of 𝑥 and 𝑘 such
that 𝑎 ≤ 𝐶𝑏. Firstly, since 𝐾0 ∈ 𝐿2(0, ∞) and 𝐼0 ∈ 𝐿2(0, 1), then for 𝑥 ∈ (0, 1) such that 0 ≤ 𝜆𝑘𝑥 ≤ 1,
we have with the help of the Cauchy-Schwarz inequality and change of variables

|∫
1

𝑥
𝐾0(𝜆𝑘𝑡)𝑓 (𝑡)dt| ≤ ( 1

𝜆𝑘 ∫
𝜆𝑘

𝜆𝑘𝑥
𝐾0(𝑡)2dt)

1/2

‖𝑓‖𝐿2(𝑥,1) ≤
‖𝐾0‖𝐿2(0,∞) ‖𝑓‖𝐿2(0,1)

√𝜆𝑘
,

and

|∫
𝑥

0
𝐼0(𝜆𝑘𝑡)𝑓 (𝑡)dt| ≤ ( 1

𝜆𝑘 ∫
𝜆𝑘𝑥

0
𝐼0(𝑡)2dt)

1/2

‖𝑓‖𝐿2(0,𝑥) ≤ ‖𝐼0‖𝐿∞(0,1) √𝑥 ‖𝑓‖𝐿2(0,1) .

On the other hand, for 𝑥 ∈ (0, 1) such that 𝜆𝑘𝑥 ≥ 1, we have

|
1

∫
𝑥

𝐾0(𝜆𝑘𝑡)𝑓 (𝑡)dt| ≤
1

√𝜆𝑘
(
+∞

∫
𝜆𝑘𝑥

𝐾0(𝑡)2dt)

1/2

‖𝑓‖𝐿2(0,1)

≲ 1

√𝜆𝑘
(
+∞

∫
𝜆𝑘𝑥

𝑒−2𝑡

𝑡
dt)

1/2

‖𝑓‖𝐿2(0,1) ≲
𝑒−𝜆𝑘𝑥

𝜆𝑘√𝑥
‖𝑓‖𝐿2(0,1) ,
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and, using the fact1 that ∫𝑥
′

1
𝑒2𝑡
𝑡 dt ≲

𝑒2𝑥
′

𝑥′ ,

|
𝑥

∫
0

𝐼0(𝜆𝑘𝑡)𝑓 (𝑡)dt| ≤
1

√𝜆𝑘
(

𝜆𝑘𝑥

∫
0

𝐼0(𝑡)2dt)

1/2

‖𝑓‖𝐿2(0,1)

≲ 1

√𝜆𝑘
(

𝜆𝑘𝑥

∫
1

𝑒2𝑡

𝑡
dt)

1/2

‖𝑓‖𝐿2(0,1) ≲
𝑒𝜆𝑘𝑥

𝜆𝑘√𝑥
‖𝑓‖𝐿2(0,1) .

Remark 5.2.8. Notice that the behavior of ∫1𝑥 𝐾0(𝜆𝑘𝑡)𝑓 (𝑡)dt is optimal in the sense that

sup
𝑘>0

sup
𝑓 ∈𝐿2(0,1)

√𝜆𝑘 ∫
1
0 𝐾0(𝜆𝑘𝑡)𝑓 (𝑡)dt
‖𝑓‖𝐿2(0,1)

= ‖𝐾0‖𝐿2(0,∞) .

This can be easily check by computing the limit of the above quantity with 𝑓 (𝑡) = 𝐾0(𝜆𝑘𝑡).

A direct corollary of the asymptotics of the modified Bessel functions is the following.

Lemma 5.2.9. We have, for 𝑘 > 0,

𝑎+𝑘 = 𝒪(𝑒
−𝜆𝑘

𝜆𝑘
‖𝑓𝑘‖𝐿2(−1,1)) , 𝑏+𝑘 = 𝒪( 1

√𝜆𝑘
‖𝑓𝑘‖𝐿2(−1,1)) . (5.19)

Proof. Using the expressions of 𝑎+𝑘 and 𝑏+𝑘 in Lemma 5.2.4 and the two Lemmas 5.2.6 and 5.2.7, we
directly have

|𝑎+𝑘 | ≲ 𝑒−4𝜆𝑘 𝑒
𝜆𝑘

𝜆𝑘
‖𝑓𝑘‖𝐿2(−1,1) + 𝑒−2𝜆𝑘

‖𝑓𝑘‖𝐿2(−1,1)

√𝜆𝑘
+ 𝑒−2𝜆𝑘 𝑒

𝜆𝑘

𝜆𝑘
‖𝑓𝑘‖𝐿2(0,1) ≲

𝑒−𝜆𝑘
𝜆𝑘

‖𝑓𝑘‖𝐿2(−1,1) ,

|𝑏+𝑘 | ≲ 𝑒−2𝜆𝑘 𝑒
𝜆𝑘

𝜆𝑘
‖𝑓𝑘‖𝐿2(−1,1) +

‖𝑓𝑘‖𝐿2(−1,1)

√𝜆𝑘
≲

‖𝑓𝑘‖𝐿2(−1,1)

√𝜆𝑘
.

Proof of Proposition 5.2.5. According to paragraph 5.1, showing that 𝑢+ ∈ 𝐿2𝚛(Ω) consists in bound-
ing from above

∑
𝑘∈𝑁

(1 + 𝜆2𝑘) ‖𝑢
+
𝑘 ‖

2
𝐿2(−1,0) , and ∑

𝑘∈𝑁
(1 + 𝜆2𝑘) ‖𝑢

+
𝑘 ‖

2
𝐿2(0,1) .

Estimation on (0, 1): We first estimate 𝑢̂+𝑘 . Using Lemmas 5.2.6 and 5.2.7, the first part of 𝑢̂+𝑘 is
estimated as

∫
1

0
|𝐼0(𝜆𝑘𝑥) ∫

1

𝑥
𝐾0(𝜆𝑘𝑡)𝑓𝑘(𝑡)dt|

2

dx

= ∫
1/𝜆𝑘

0
|𝐼0(𝜆𝑘𝑥) ∫

1

𝑥
𝐾0(𝜆𝑘𝑡)𝑓𝑘(𝑡)dt|

2

dx + ∫
1

1/𝜆𝑘
|𝐼0(𝜆𝑘𝑥) ∫

1

𝑥
𝐾0(𝜆𝑘𝑡)𝑓𝑘(𝑡)dt|

2

dx

≲ ∫
1/𝜆𝑘

0
|
‖𝑓‖𝐿2(0,1)

√𝜆𝑘
|
2

dx + ∫
1

1/𝜆𝑘
| 𝑒
𝜆𝑘𝑥

√𝑥
𝑒−𝜆𝑘𝑥

𝜆𝑘√𝑥
‖𝑓‖𝐿2(0,1)|

2
dx ≲

‖𝑓𝑘‖
2
𝐿2(0,1)

𝜆2𝑘
,

1Notice that ∫𝑥
′

1
𝑒2𝑡

𝑡
dt = [ 𝑒

2𝑡

2𝑡
]
𝑥′

1
+ ∫𝑥

′

1
𝑒2𝑡

2𝑡2
dt so that ∫𝑥

′

1
𝑒2𝑡

𝑡
dt ≲ 𝑒2𝑥

′

𝑥′
.
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Repeating the same argument for the second part of 𝑢̂+𝑘 gives the same estimation, which results
in

‖𝑢̂+𝑘 ‖
2
𝐿2(0,1) ≲

‖𝑓𝑘‖
2
𝐿2(−1,1)

𝜆2𝑘
.

Next, in order to estimate 𝑢+,0𝑘 , we use Lemma 5.2.9, so that

‖𝑢+,0𝑘 ‖
2
𝐿2(0,1) ≲

𝑒−2𝜆𝑘

𝜆2𝑘
‖𝑓𝑘‖

2
𝐿2(−1,1) ∫

1

0
|𝐼0(𝜆𝑘𝑥)|2dx +

‖𝑓𝑘‖
2
𝐿2(−1,1)

𝜆𝑘 ∫
1

0
|𝐾0(𝜆𝑘𝑥)|2dx ≲

‖𝑓𝑘‖
2
𝐿2(−1,1)

𝜆2𝑘
.

Then, summing up the last two equations gives that (1 + 𝜆2𝑘) ‖𝑢
+
𝑘 ‖

2
𝐿2(0,1) ≲ ‖𝑓𝑘‖

2
𝐿2(−1,1), and the

result holds on (0, 1) since 𝑓 ∈ 𝐿2𝚛(Ω).

Estimation on (−1, 0): We can no longer estimate 𝑢̂+𝑘 and 𝑢+,0𝑘 separately on (−1, 0) because of
the apparition of terms like

𝑏+𝑘 𝐼0(𝜆𝑘𝑥), 𝐼0(𝜆𝑘𝑥) ∫
1

𝑥
𝐾0(𝜆𝑘|𝑡 |)𝑓𝑘(𝑡)dt, and 𝐼0(𝜆𝑘𝑥) ∫

𝑥

0
𝐼0(𝜆𝑘𝑡)𝑓𝑘(𝑡)dt,

which do not behave nicely as 𝑘 → +∞. Therefore, using the expression (5.18) of 𝐾0, we have for
𝑥 ∈ (−1, 0):

𝑢+𝑘 (𝑥) = (𝑎+𝑘 + ∫
1

−1
𝐾0(|𝜆𝑘𝑡 |)𝑓𝑘(𝑡)dt + 𝑖𝜋𝑏+𝑘 ) 𝐼0(𝜆𝑘𝑥) − 𝑏+𝑘 𝐾0(|𝜆𝑘𝑥|)

− 𝐼0 (𝜆𝑘𝑥) ∫
𝑥

−1
𝐾0(|𝜆𝑘𝑡 |)𝑓𝑘(𝑡)dt + 𝐾0(|𝜆𝑘𝑥|) ∫

𝑥

0
𝐼0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt.

(5.20)

Then, it is easy to check as in Corollary 5.2.9 that

∫
1

−1
𝐾0(|𝜆𝑘𝑡 |)𝑓𝑘(𝑡)dt + 𝑖𝜋𝑏+𝑘 =

𝐾0(𝜆𝑘)
𝐼0(𝜆𝑘) ∫

1

−1
𝐼0(𝜆𝑘𝑡)𝑓𝑘(𝑡)dt = 𝒪 (𝑒

−𝜆𝑘

𝜆𝑘
‖𝑓‖𝐿2(−1,1)) .

Therefore, estimating 𝑢+𝑘 as before leads to the expected result.

Although 𝑢+ ∈ 𝐿2(Ω) is expected, 𝜕𝑦𝑢+ ∈ 𝐿2(Ω) is not. Indeed, as noticed in Chapter 4, the
natural norm of the problem is

(∫
Ω
|𝑢|2d𝐱 + ∫

Ω
|𝑥 | |∇𝑢|2d𝐱)

1/2
, (5.21)

which a priori does not control the 𝐿2-norm of 𝜕𝑦𝑢+. On the other hand, the solution is not regular
along the 𝑥-direction. To see this, it suffices to consider 𝑓 ∈ 𝐿2(Ω) such that 𝑓 (𝑥, 𝑦) ≡ 𝑓 (𝑥). With
a such 𝑓, 𝑓0 = 𝑓 and 𝑓𝑘 = 0 for 𝑘 ≥ 0, which leads to a tensor-like example like the one exposed in
section 4.1. Moreover, in the view of Lemma 5.2.4,

∫
Ω
|𝑥 | |𝜕𝑥𝑢|2d𝐱 = ∞,

due to the presence of the logarithm. Notice that this behavior is independent of whether the
support of the source term touches the interface or not.

Remark 5.2.10. On the other hand, the behavior of the source term has an influence on the
regularity of the solution. For example, assume that the support of 𝑓 is a subset ofΩ⧵(−𝑙, 𝑙)×(0, 𝐿).
Then, the estimation 𝑏𝑘 can be significantly improved, see next section.
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5.3 Regularity matters

5.3.1 Regular and singular parts of the solution

As noticed in the previous paragraph, the derivative of the solution 𝜕𝑥𝑢+ is not regular. This is
due to the logarithmic behavior of its component 𝑢+𝑘 . Indeed, in view of Remark 5.2.2 and the
behavior of 𝐾0 near 0, we can split 𝑢+𝑘 in to parts 𝑢+𝑘 = 𝑢+𝑘,𝑠𝑖𝑛𝑔 + 𝑢+𝑘,𝑟𝑒𝑔 with

𝑢+𝑘,𝑠𝑖𝑛𝑔(𝑥) = 𝑏+𝑘 (log |𝑥 | + 𝑖𝜋𝟙𝑥<0) ,

𝑢+𝑘,𝑟𝑒𝑔(𝑥) = 𝑢+𝑘 (𝑥) − 𝑏+𝑘 (log |𝑥 | + 𝑖𝜋𝟙𝑥<0) .

Therefore, it is natural to define the singular part of the solution as:

𝑢+𝑠𝑖𝑛𝑔(𝑥, 𝑦) = 𝑔+(𝑦) (log |𝑥 | + 𝑖𝜋𝟙𝑥<0) , with 𝑔+(𝑦) ≔ ∑
𝑘∈ℕ

𝑏+𝑘 𝜓𝑘(𝑦), (5.22)

and the regular part as

𝑢+𝑟𝑒𝑔(𝑥, 𝑦) = ∑
𝑘∈ℕ

𝑢+𝑘,𝑟𝑒𝑔(𝑥)𝜓𝑘(𝑦). (5.23)

Let us give the following two regularity results.

Proposition 5.3.1. Given 𝑓 ∈ 𝐿2𝚛(Ω), it holds that 𝑔+ ∈ 𝐻 1/2
𝚛 (Σ). In addition, ‖𝑔+‖𝐻 1/2

𝚛 (Σ) ≲
‖𝑓Ω‖𝐿2𝚛(Ω).

Proof. This is a direct consequence of Lemma 5.2.7, and Remark 5.2.10.

Proposition 5.3.2. Given 𝑓 ∈ 𝐿2𝚛(Ω), 𝜕𝑥𝑢+𝑟𝑒𝑔 ∈ 𝐿2𝚛(Ω𝑗) for 𝑗 ∈ {𝑝, 𝑛}. In addition, ‖𝜕𝑥𝑢+𝑟𝑒𝑔‖𝐿2𝚛(Ω𝑗)
≲

‖𝑓Ω‖𝐿2𝚛(Ω).

Like for Proposition 5.2.5, we need some results about the asymptotics of the modified Bessel
functions. Recall that 𝐼 ′0(𝑥) = 𝐼1(𝑥) and 𝐾 ′

0(𝑥) = −𝐾1(𝑥).

Lemma 5.3.3 ([51, §10.30, (10.25.3), (10.31.1)]). The modified Bessel functions satisfies

𝐼1(𝑧) ∼
𝑧→0

𝑧
2
, 𝐾1(𝑧) −

1
𝑧

∼
𝑧→0

𝑧
2
log(𝑧),

𝐼1(𝑧) ∼
|𝑧|→+∞

𝑒𝑧

√2𝜋𝑧
, 𝐾1(𝑧) ∼

|𝑧|→+∞ √
𝜋
2𝑧
𝑒−𝑧,

for | arg 𝑧| < 𝜋/2 − 𝛿, for any 𝛿 > 0 arbitrary small.

Proof. The derivative 𝜕𝑥𝑢+𝑟𝑒𝑔 is easily computed inside Ω𝑗, 𝑗 ∈ {𝑝, 𝑛}:

𝜕𝑥𝑢+𝑘,𝑟𝑒𝑔(𝑥) =𝑎
+
𝑘 𝜆𝑘𝐼1 (𝜆𝑘𝑥) + 𝑏+𝑘 𝜆𝑘 (𝐾1 (𝜆𝑘𝑥) −

1
𝜆𝑘𝑥

)

− 𝜆𝑘𝐼1 (𝜆𝑘𝑥) ∫
𝑥

1
𝐾0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt − 𝜆𝑘𝐾1 (𝜆𝑘𝑥) ∫

𝑥

0
𝐼0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt.
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Estimation on (0, 1). Most of the integrals can easily be bounded like in the proof of Proposi-
tion 5.2.5, except

∫
1/𝜆𝑘

0
|𝜆𝑘𝐾1 (𝜆𝑘𝑥) ∫

𝑥

0
𝐼0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt|

2
dx ≲ ∫

1/𝜆𝑘

0
|
‖𝑓𝑘‖𝐿2(0,1)

√𝑥
|
2

dx = +∞

if one uses naively the Lemmas 5.2.7 and 5.3.3. Fortunately, the Hardy’s inequality [52] allows us

to conclude. Firstly, there is a constant 𝐶𝐾1 > 0 such that 𝐾1(𝑥) ≤
𝐶𝐾1
𝑥 for all 𝑥 ∈ (0, 1). Then,

∫
1/𝜆𝑘

0
|𝜆𝑘𝐾1 (𝜆𝑘𝑥) ∫

𝑥

0
𝐼0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt|

2
dx ≤ 𝐶𝐾1 ∫

1/𝜆𝑘

0
| 1
𝑥 ∫

𝑥

0
𝐼0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt|

2
dx

Next, using the Hardy’s inequality gives

∫
1/𝜆𝑘

0
|𝜆𝑘𝐾1 (𝜆𝑘𝑥) ∫

𝑥

0
𝐼0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt|

2
dx ≤ 4𝐶𝐾1 ∫

1/𝜆𝑘

0
|𝐼0 (𝜆𝑘𝑥) 𝑓𝑘(𝑥)|

2 dx

≤ 4𝐶𝐾1 ‖𝐼0‖
2
𝐿∞(0,1) ‖𝑓𝑘‖

2
𝐿2(0, 1𝜆𝑘

)
.

These estimations lead to ‖𝜕𝑥𝑢+𝑘,𝑟𝑒𝑔‖𝐿2(0,1) ≲ ‖𝑓𝑘‖𝐿2(0,1). Since the result holds for all 𝑘, we have

‖𝜕𝑥𝑢+𝑟𝑒𝑔‖𝐿2𝚛(Ω𝑝)
≲ ‖𝑓Ω‖𝐿2𝚛(Ω), and 𝜕𝑥𝑢+𝑟𝑒𝑔 ∈ 𝐿2𝚛(Ω𝑝).

Estimation on (−1, 0). In the view of the expression (5.20) of 𝑢+𝑘 on (−1, 0), we have

𝜕𝑥𝑢+𝑘,𝑟𝑒𝑔(𝑥) =𝜆𝑘 (𝑎
+
𝑘 + ∫

1

−1
𝐾0(|𝜆𝑘𝑡 |)𝑓𝑘(𝑡)dt + 𝑖𝜋𝑏+𝑘 ) 𝐼1 (𝜆𝑘𝑥) − 𝑏+𝑘 𝜆𝑘 (𝐾1(|𝜆𝑘𝑥|) −

1
|𝜆𝑘𝑥|

)

− 𝜆𝑘𝐼1 (𝜆𝑘𝑥) ∫
𝑥

−1
𝐾0(|𝜆𝑘𝑡 |)𝑓𝑘(𝑡)dt + 𝜆𝑘𝐾1|𝜆𝑘𝑥| ∫

𝑥

0
𝐼0 (𝜆𝑘𝑡) 𝑓𝑘(𝑡)dt.

Therefore, the estimations follows exactly like the previous case and 𝜕𝑥𝑢+𝑟𝑒𝑔 ∈ 𝐿2𝚛(Ω𝑛) with the
bound 𝜕𝑥𝑢+𝑟𝑒𝑔 ∈ 𝐿2𝚛(Ω𝑛).

We proved that 𝑔+ ∈ 𝐻 1/2
𝚛 (Σ), which does not imply that 𝜕𝑦𝑢+𝑠𝑖𝑛𝑔 ∈ 𝐿2(Ω). Similarly, we did not

prove that 𝜕𝑦𝑢+𝑟𝑒𝑔 ∈ 𝐿2(Ω). Therefore, 𝑢+𝑟𝑒𝑔 may not have classical traces on the interface. Indeed,
this can easily be seen on the trace: using that 𝐾0(𝑥) + log(𝑥) → log(2) − 𝛾 as 𝑥 → 0+, where 𝛾 is
the Euler-Mascheroni constant, we find that

lim
𝑥→0+

𝑢+𝑘,𝑟𝑒𝑔 = lim
𝑥→0−

𝑢+𝑘,𝑟𝑒𝑔 = 𝑎+𝑘 − 𝑏+𝑘 (log 𝜆𝑘 + log(2) − 𝛾) + ∫
1

0
𝐾0(𝜆𝑘𝑡)𝑓𝑘(𝑡)dt.

Then, using the estimation of 𝑎+𝑘 and 𝑏+𝑘 for Lemma 5.2.9, which is optimal, see Remark 5.2.8, the
dominating term is 𝑏+𝑘 log 𝜆𝑘, and we can only conclude that

𝑢+𝑟𝑒𝑔|Σ ∈ 𝐻 1/2−𝜀
𝚛 (Σ), ∀𝜀 > 0.
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5.3.2 Going back to the jump of solutions

On the other hand, given that the limits above coincide on each side of the interface, one could
argue that the jump between 𝑢+𝑟𝑒𝑔|Ω𝑝

and 𝑢+𝑟𝑒𝑔|Ω𝑛
vanishes. Notice this holds in particular if the

source term goes up to the interface, i.e., supp 𝑓Ω ∩ Σ ≠ ∅.
Going back to Assumption 4.1.2, the Sobolev space 𝑄 = 𝐻 1

1/2(Ω𝑝) × 𝐻 1
1/2(Ω𝑛), see  (4.6),

dissociate Ω𝑝 and Ω𝑛 in order to ensure completeness results. It is in this Sobolev space in which
the sesquilinear form of the problem is continuous and in which the regular part is measured. Then,
there is a priori no relation between the two parts of the solution at the interface. Consequently,
a weak notion of jump for functions in 𝑄 is addressed in Chapter 6.

5.3.3 Refined regularity estimation

From the above considerations, we see that the key quantity of the regularity analysis is the
behavior of the integral

∫
1

−1
𝐾0(|𝜆𝑘𝑡 |)𝑓𝑘(𝑡)dt. (5.24)

Thus, it appears that imposing conditions on the source term may improve the regularity of both
the regular and the singular parts. A very simple way to eliminate the last integral (5.24) is to
consider 𝑓Ω ∈ 𝐿2𝚛(Ω) such that every 𝑓𝑘 are odd for all 𝑘 ∈ ℕ sufficiently large. However, this
takes advantages of the symmetry of the domain, which is not guaranteed. Another simple and
more realistic condition is that the support of the source term is far from the interface. Actually,
this is the behavior of the source term in the original problem introduced in Chapter 4.

Therefore, the results of this section are supported by the following lemma, which is an
improvement of Lemma 5.2.7.

Lemma 5.3.4. Let 𝑓 ∈ 𝐿2(−1, 1) be such that there is 𝑥 > 0 such that supp 𝑓 ∩ (−𝑥, 𝑥) = ∅. Then,

|∫
1

−1
𝐾0(|𝜆𝑘𝑡 |)𝑓 (𝑡)dt| = 𝒪 (𝑒

−𝜆𝑘𝑙

𝜆𝑘√𝑙
‖𝑓‖𝐿2(0,1)) .

Proof. Since 𝜆𝑘 → +∞ as 𝑘 → ∞, it suffices to apply the second part of Lemma 5.2.7 as soon as
𝜆𝑘𝑙 > 1.

Then, implementing the previously outlined approach significantly enhances the behavior of
𝑏+𝑘 since

𝑏+𝑘 = 𝒪(𝑒
−𝜆𝑘𝑙

𝜆𝑘√𝑙
‖𝑓‖𝐿2(0,1)) ,

whose consequences are summarized in the following proposition.

Proposition 5.3.5. Given 𝑓 ∈ 𝐿2𝚛(Ω) be such that supp 𝑓 ∩ Σ = ∅, we have 𝑔+ ∈ 𝐻 1
𝚛 (Σ) and

𝑢+𝑟𝑒𝑔 ∈ 𝐻 1
𝚛 (Ω). In addition, ‖𝑔+‖𝐻 1

𝚛 (Σ)
+ ‖𝑢+𝑟𝑒𝑔‖𝐻 1

𝚛 (Ω)
≲ ‖𝑓Ω‖𝐿2𝚛(Ω).

In that case, the regular part has more than a vanishing jump at the interface, since it also has
a classical trace.

It is legitimate to look at the case 𝜔 ≠ 0. However, the result above cannot be straightforwardly
extended to the case of 𝜔 ≠ 0 via a bootstrap argument since even if the support of source term is
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disjoint with the interface, this is obviously not the case for a solution of the problem. Nevertheless,
it is possible to replicate all the approach now with 𝜔 ≠ 0. In that case, a Whittaker equation
appears instead of a modified Bessel equation. Its resolution provides solutions with very similar
behavior to the modified Bessel functions, in particular the logarithmic behavior of the singular
part.

Remark 5.3.6. In the case of supp 𝑓 ∩ Σ = ∅, according to Lemma 5.2.7, the exponential behavior
of 𝑏+𝑘 actually leads to 𝑔+ ∈ 𝒞∞

𝑝𝑒𝑟(Σ).

5.4 Limiting absorption principle

Since both the formal limiting absorption solution 𝑢+ and the solution with absorption 𝑢𝜈 belong
to 𝐿2(Ω), one can verify the following theorem.

Theorem 5.4.1 (Limiting absorption principle). The following convergence holds:

𝑢𝜈
𝐿2(Ω)
−−−−−→
𝜈→0+

𝑢+.

The proof of this theorem relies on the following two lemmas, in which actually all the
mathematical difficulties lie.

Lemma 5.4.2. The series 𝜈 ↦ ‖𝑢𝜈‖2𝐿2(Ω) = ∑𝑘∈ℕ ‖𝑢𝜈𝑘‖
2
𝐿2(−1,1) is normally convergent for 𝜈 ∈ (0, 1).

Lemma 5.4.3. For all 𝑘 ∈ ℕ, 𝑢𝜈𝑘 → 𝑢+𝑘 as 𝜈 → 0+ in 𝐿2(−1, 1).

Proof of Theorem 5.4.1. It suffices to prove that the series ∑𝑘∈ℕ ‖𝑢𝜈𝑘 − 𝑢+𝑘 ‖
2
𝐿2(−1,1) goes to 0 as 𝜈 →

0+. Obviously, by Lemma 5.4.2, this series is normally convergent for 𝜈 ∈ (0, 1). Therefore, we
can swap the sum and the limit symbols. Then, we conclude with Lemma 5.4.3:

lim
𝜈→0+

∑
𝑘∈ℕ

‖𝑢𝜈𝑘 − 𝑢+𝑘 ‖
2
𝐿2(−1,1) = ∑

𝑘∈ℕ
lim
𝜈→0+

‖𝑢𝜈𝑘 − 𝑢+𝑘 ‖
2
𝐿2(−1,1) = 0.

Both previous lemmas need the following estimations of the modified Bessel functions with
complex argument.

Lemma 5.4.4. We have for all 𝑥 > 0 and 𝑦 ∈ ℝ

|𝐼0 (𝑥 + 𝑖𝑦)| ≤ 𝐼0(𝑥), and |𝐾0 (𝑥 + 𝑖𝑦)| ≤ 𝐾0(𝑥).

Proof. Both these inequalities use the integral representation of modified Bessel functions, refer
to [51, §10.32]. Therefore, we have

|𝐼0 (𝑥 + 𝑖𝑦)| ≤ 1
𝜋 ∫

𝜋

0
|𝑒(𝑥+𝑖𝑦) cos 𝜃| d𝜃 = 1

𝜋 ∫
𝜋

0
𝑒𝑥 cos 𝜃d𝜃 = 𝐼0(𝑥).

The inequality on 𝐾0 follows in the same way.
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Proof of Lemma 5.4.2. The proof consists in estimating ‖𝑢𝜈𝑘‖
2
𝐿2(−1,1). Like in the proof of Proposi-

tion 5.2.5, we separate the study over the intervals (−1, 0) and (0, 1). Since this study on both
intervals follows the same process, we will only describe it on (0, 1). Therefore, we have

‖𝑢𝜈𝑘‖𝐿2(0,1) ≤ |𝑎𝜈𝑘| ‖𝐼0(𝜆𝑘(𝑥 + 𝑖𝜈))‖𝐿2(0,1) + |𝑏𝜈𝑘| ‖𝐾0(𝜆𝑘(𝑥 + 𝑖𝜈))‖𝐿2(0,1) + ‖𝑢̂𝜈𝑘‖𝐿2(0,1) .

Firstly, Lemma 5.4.4 yields

‖𝐼0(𝜆𝑘(𝑥 + 𝑖𝜈))‖𝐿2(0,1) ≤ ‖𝐼0(𝜆𝑘𝑥)‖𝐿2(0,1) , and ‖𝐾0(𝜆𝑘(𝑥 + 𝑖𝜈))‖𝐿2(0,1) ≤ ‖𝐾0(𝜆𝑘𝑥)‖𝐿2(0,1) .

With this observation, it suffices to show that 𝑎𝜈𝑘 and 𝑏𝜈𝑘 follow behavior similar to the ones
described in Lemma 5.2.9, and similarly for ‖𝑢̂𝜈𝑘‖𝐿2(0,1) with ‖𝑢̂+𝑘 ‖𝐿2(0,1). The latter is simple since it
follows the proof of Proposition 5.2.5, for example

∫
1

0
|𝐼0 (𝜆𝑘(𝑥 + 𝑖𝜈)) ∫

1

𝑥
𝐾0 (𝜆𝑘(𝑡 + 𝑖𝜈)) 𝑓𝑘(𝑡)dt|

2

dx

≤ ∫
1

0
|𝐼0 (𝜆𝑘𝑥) ∫

1

𝑥
|𝐾0 (𝜆𝑘𝑥) 𝑓𝑘(𝑡)| dt|

2

dx ≲
‖𝑓𝑘‖

2
𝐿2(0,1)

𝜆2𝑘
,

as for Proposition 5.2.5. Therefore, we have ‖𝑢̂𝜈𝑘‖𝐿2(0,1) ≲ 𝜆−1𝑘 ‖𝑓𝑘‖𝐿2(0,1). In the view of the expres-

sions (5.15) and (5.16) of 𝑎𝜈𝑘 and 𝑏𝜈𝑘, we first estimate (Δ𝜈
𝑘)

−1
, more precisely, we compare it to

Δ0
𝑘 = 𝑖𝜋𝐼0(𝜆𝑘)2. Let us prove that

(𝜆, 𝜈) ∈ [𝜆1, +∞) × [0, 1] ↦ |
𝑖𝜋𝐼0(𝜆)2

Δ𝜈
𝑘

|

is bounded. Using the asymptotics of modified Bessel function, summarized in Lemma 5.2.6, there
is 𝐶 > 0 large enough such that for all 𝜆 > 𝐶 and 𝜈 ∈ (0, 1), the function above is bounded on
[𝐶, +∞] × [0, 1]. On the other hand, this function is continuous on the compact set [𝜆1, 𝐶] × [0, 1],
which implies that it is bounded on this set, and so on [𝜆1, +∞] × [0, 1]. Afterwards, with the
expressions of 𝑎𝜈𝑘 and 𝑏𝜈𝑘, Lemma 5.4.4 and the last boundedness result, we retrieve the behavior of
Lemma 5.2.9, uniformly with respect to 𝜈 ∈ (0, 1):

|𝑎𝜈𝑘| ≲
𝑒−𝜆𝑘
𝜆𝑘

‖𝑓𝑘‖𝐿2(−1,1) , and |𝑏𝜈𝑘| ≲
1

√𝜆𝑘
‖𝑓𝑘‖𝐿2(−1,1) . (5.25)

Finally, like for Proposition 5.2.5, it follows that ‖𝑢𝜈𝑘‖𝐿2(0,1) ≤ 𝐶𝜆−1𝑘 ‖𝑓𝑘‖𝐿2(0,1) where 𝐶 is independent
of 𝜈 ∈ (0, 1) and 𝜆𝑘.

The estimations above allows us to show the Lemma 5.4.3.

Proof of Lemma 5.4.3. Using Lemma 5.4.4, we easily find 𝑔𝑘 ∈ 𝐿2(−1, 1) be such that |𝑢𝜈𝑘(𝑥)| < 𝑔𝑘(𝑥)
for 𝜈 ∈ (0, 1). Finally, since 𝑢𝜈𝑘(𝑥) → 𝑢+𝑘 (𝑥) as 𝜈 → 0+ for almost every 𝑥 ∈ (0, 1), the Lebesgue’s
dominated convergence theorem concludes the proof.
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5.5 Conclusions

The observation of the present chapter justify the use in Chapter 6 of Assumption 4.1.2 requiring
a source term with support disjoint from the interface. This also shows that assuming 𝑔 ∈ 𝐻 2

𝑝𝑒𝑟(Σ)
is too restrictive.

On the other hand, in the case of a general source term, the fact that the amplitude 𝑔+ of the
singular part (5.22) only belongs to 𝐻 1/2

𝚛 (Σ) suggests that it does not trap all the singularities
of the problem. An idea would be to consider an amplitude of the singular part with more
degrees of freedom, for example, a lifting 𝑔̃+ ∈ 𝐻 1

𝚛 (Ω) of 𝑔+, with a singular part now equal to
𝑢̃+𝑠𝑖𝑛𝑔(𝑥, 𝑦) = 𝑔̃+(𝑥, 𝑦) (log |𝑥 | + 𝑖𝜋𝟙𝑥<0). The counterpart of this approach is that the regular part
would be less regular since ∇𝑢̃𝑟𝑒𝑔 ∉ 𝐿2𝚛(Ω) but rather 𝑥 𝜀∇𝑢̃𝑟𝑒𝑔 ∈ 𝐿2𝚛(Ω) for all 𝜀 > 0. Then, the
following assumption would be more pertinent.

Assumption 5.5.1. The family of solutions (𝑢𝜈)𝜈>0 of the problem with absorption converges in
𝐿2(Ω) to the limiting absorption solution 𝑢+ ∈ 𝐿2(Ω)

𝑢𝜈
𝐿2(Ω)
−−−−−→
𝜈→0+

𝑢+. (5.26)

Moreover, 𝑢+ can be represented as
𝑢+ = 𝑢̃+𝑟𝑒𝑔 + 𝑢̃+𝑠𝑖𝑛𝑔,

where the pair (𝑢̃+𝑟𝑒𝑔, 𝑢̃+𝑠𝑖𝑛𝑔) is such that 𝑢̃+𝑟𝑒𝑔|Ω𝑝,𝑛
∈ 𝐻 1

1/2(Ω𝑝,𝑛) and 𝑢̃+𝑠𝑖𝑛𝑔(𝑥, 𝑦) = 𝑔̃+(𝑥, 𝑦)𝚂(𝑥) with
𝑔̃+ ∈ 𝐻 1

𝑝𝑒𝑟(Ω).

Appendix

5.A Study in another case

We consider in this section the problem (5.1) with 𝛼(𝑥, 𝑦) = 𝑥, 𝜔 > 0, and 𝑓Ω ∈ 𝐿2(Ω). As in § 5.2,
we add some absorption 𝜈 > 0, and we seek the solution of

|
|
|
|
|
|
|
|

find 𝑢𝜈 ∈ 𝐻 1(Ω) such that

− div ((𝑥 + 𝑖𝜈) ∇𝑢𝜈) − 𝜔2𝑢𝜈 = 𝑓Ω in Ω,

𝑢𝜈 = 0 on Γ𝑛 ∪ Γ𝑝,

𝑢𝜈(𝑥, 0) = 𝑢𝜈(𝑥, 𝐿), ((𝑥 + 𝑖𝜈) 𝜕𝑦) 𝑢𝜈(𝑥, 0) = ((𝑥 + 𝑖𝜈) 𝜕𝑦) 𝑢𝜈(𝑥, 𝐿), 𝑥 ∈ (−1, 1).

Since 𝑢𝜈 ∈ 𝐿2(Ω), we can decompose it onto (𝜓𝑘)𝑘∈ℕ, see Definition 5.1.2, which leads to the
following equation:

−𝜕𝑥 ((𝑥 + 𝑖𝜈)𝜕𝑥𝑢𝜈𝑘) + ((𝑥 + 𝑖𝜈)𝜆2𝑘 − 𝜔2) 𝑢𝜈𝑘 = 𝑓𝑘, for 𝑘 ≥ 0.

In order to get back to a known differential equation, we will use a substitution proposed in [51,
(1.13(iv))]. Firstly, we set 𝑧 = 𝑥 + 𝑖𝜈, which yields

−𝜕𝑧 (𝑧𝜕𝑧𝑢𝜈𝑘) + (𝑧𝜆2𝑘 − 𝜔2) 𝑢𝜈𝑘 = 𝑓𝑘, 𝑧 ∈ ℂ. (5.27)

90

https://dlmf.nist.gov/1.13.iv


5.A. Study in another case

Next, we focus on the substitution [51, (1.13.13)], which gives2 𝑤𝑘(𝑧) = √𝑧 𝑢𝜈𝑘(𝑧). This leads to the
equation

𝜕2𝑧𝑤𝑘 + ( 1
4𝑧2

+ 𝑧𝜆2𝑘 − 𝜔2) 𝑤𝑘 = √𝑧𝑓𝑘.

Finally, we obtain with the substitution 𝜂 = 2𝜆𝑘𝑧:

𝜕2𝜂𝑤𝑘 + (
1/4
𝜂2

+
𝜔2/2𝜆𝑘
𝜂

− 1
4
) 𝑤𝑘 = − 1

√2𝜆𝑘𝜂
𝑓𝑘.

This is the Whittaker equation, cf. [51, (13.14)], with the parameters ( 𝜔2

2𝜆𝑘
, 0). The solution to

the associated homogeneous equation is given by [51, (13.14.2), (13.14.3)]. Therefore, the general
solution of (5.27) is written as

𝑢𝜈𝑘(𝑧) = 𝑢0,𝜈𝑘 (𝑧) + 𝑢̂𝜈𝑘(𝑧), with 𝑢0,𝜈𝑘 (𝑧) = 𝑎𝜈𝑘𝑢
1,𝜈
𝑘 (𝑧) + 𝑏𝜈𝑘𝑢

2,𝜈
𝑘 (𝑧),

and

𝑢1,𝜈𝑘 (𝑧) = √2𝜆𝑘𝑒−𝜆𝑘𝑧𝑀(1
2
− 𝜔2

2𝜆𝑘
, 1, 2𝜆𝑘𝑧) , 𝑢2,𝜈𝑘 (𝑧) = √2𝜆𝑘𝑒−𝜆𝑘𝑧𝑈 (

1
2
− 𝜔2

2𝜆𝑘
, 1, 2𝜆𝑘𝑧) ,

where 𝑀, 𝑈 are the standard solutions of the Kummer’s equation, cf. [51, (13.2)]. The particular
solution 𝑢̂𝜈𝑘 can be computed like in the proof of 5.2.1.

The major point of the chapter is the behavior of the homogeneous solution, as in Lemma 5.2.6.
This lemma can be easily adapted in the following proposition.

Lemma 5.A.1. The homogeneous solutions 𝑢1,𝜈𝑘 and 𝑢2,𝜈𝑘 satisfy

𝑢1,𝜈𝑘 (𝑧)

√2𝜆𝑘
∼

𝑧→0
1, Γ (1

2
− 𝜔2

2𝜆𝑘
) 𝑢2,𝜈𝑘 (𝑧) ∼

𝑧→0
− log(𝑧),

𝑢1,𝜈𝑘 (𝑧)

√2𝜆𝑘
∼

|𝑧|→+∞

(2𝜆𝑘𝑧)
−𝜔2/2𝜆𝑘

√
1 − 𝜔2

𝜆𝑘

× 𝑒𝜆𝑘𝑧

√𝜆𝑘𝑧
, Γ (1

2
− 𝜔2

2𝜆𝑘
) 𝑢2,𝜈𝑘 (𝑧) ∼

|𝑧|→+∞
(2𝜆𝑘𝑧)

−𝜔2/2𝜆𝑘
Γ (12 −

𝜔2

2𝜆𝑘
)

√2𝜆𝑘𝑧
𝑒−𝜆𝑘𝑧,

for |arg 𝑧| < 𝜋/2 − 𝛿, 𝛿 > 0 arbitrary small. 𝑧 ↦ Γ(𝑧) is the usual Gamma function, cf. [51, §5].

Proof. For the asymptotics with small argument, we use [51, (13.2.13)] and [51, (13.2.19)]. For the
asymptotics with large argument, we use [51, (13.2.4), (13.2.23)] and [51, (13.2.6)].

Let us make few remark about these asymptotics. Given 𝑧 ∈ ℂ ⧵ (−∞, 0], we have that

(2𝜆𝑘𝑧)
−𝜔2/2𝜆𝑘 −−−−−→

𝑘→+∞
1, Γ (1

2
− 𝜔2

2𝜆𝑘
) −−−−−→

𝑘→+∞
Γ (1

2
) = √𝜋.

Therefore, we obtain a very similar behavior as observed in Lemma 5.2.6. Then, up to a renormal-
ization, most of the development done in this chapter could be iterated and should lead toward
the same results, in particular on the presence of a logarithmic singularity, the regularity of its
amplitude and the limiting absorption principle.

2Within the notation of [51, (1.13)], we set 𝑓 (𝑧) = 𝑧−1 and 𝑔(𝑧) = 𝜆2𝑘 − 𝜔2/𝑧.
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Mixed variational formulation
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6.1 Problem setting

Let Ω = (−𝑎, 𝑎) × (0, 𝐿), with the notations of Chapter 4, 𝜈 > 0 be an absorption parameter.
Consider the following family of problems:

|
|
|
|
|
|
|
|

find 𝑢𝜈 ∈ 𝐻 1(Ω) such that

− div((𝛼 + 𝑖𝜈)∇𝑢𝜈) − 𝜔2𝑢𝜈 = 𝑓Ω in Ω,

(𝛼 + 𝑖𝜈) 𝜕𝑛𝑢𝜈 + 𝑖𝜆𝑢𝜈 = 𝑓Γ on Γ𝑛 ∪ Γ𝑝,

𝑢𝜈(𝑥, 0) = 𝑢𝜈(𝑥, 𝐿), ((𝛼 + 𝑖𝜈) 𝜕𝑦) 𝑢𝜈(𝑥, 0) = ((𝛼 + 𝑖𝜈) 𝜕𝑦) 𝑢𝜈(𝑥, 𝐿), 𝑥 ∈ (−𝑎, 𝑎),

(6.1)
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where 𝑓Ω ∈ 𝐿2(Ω) and 𝑓Γ ∈ 𝐿2(Γ𝑛∪Γ𝑝). Notice the slight difference with the setting from Chapter 4
due to the introduction of the volume source term 𝑓Ω. The function 𝛼(𝑥, 𝑦) ∈ 𝒞 2

𝑝𝑒𝑟 ,𝑦 (Ω; ℝ) is such
that 𝛼(𝑥, 𝑦) > 0 on Ω𝑝 = {(𝑥, 𝑦) ∶ 𝑥 > 0} and 𝛼(𝑥, 𝑦) < 0 on Ω𝑛 = {(𝑥, 𝑦) ∶ 𝑥 < 0}. Therefore,
𝛼(0, 𝑦) = 0.

As discussed in chapter 4, we introduce the singularity 𝚂(𝑥) ≔ log |𝑥 | + 𝑖𝜋𝟙𝑥<0, the space of
“regular functions”

𝐻 1
1/2(Ω𝑗) = {𝑣 ∈ 𝐿2(Ω𝑗) ∶ |𝛼|1/2∇𝑣 ∈ 𝐿2(Ω𝑗)} , 𝑗 ∈ {𝑝, 𝑛},

and 𝑄 = 𝐻 1
1/2 (Ω𝑝) × 𝐻 1

1/2 (Ω𝑝), see (4.6). For this chapter, we make the following assumption
introduced in chapter 4.

Assumption 6.1.1. The family of solutions (𝑢𝜈)𝜈>0 of (6.1) converges in 𝐿2(Ω) to the limiting
absorption solution 𝑢+ ∈ 𝐿2(Ω)

𝑢𝜈
𝐿2(Ω)
−−−−−→
𝜈→0+

𝑢+. (6.2)

Moreover, 𝑢+ can be represented as
𝑢+ = 𝑢+𝑟𝑒𝑔 + 𝑢+𝑠𝑖𝑛𝑔,

where the pair (𝑢+𝑟𝑒𝑔, 𝑢+𝑠𝑖𝑛𝑔) is such that the regular part 𝑢+𝑟𝑒𝑔|Ω𝑗
∈ 𝐻 1

1/2(Ω𝑗) for 𝑗 ∈ {𝑝, 𝑛} and the

singular part 𝑢+𝑠𝑖𝑛𝑔(𝑥, 𝑦) = 𝑔+(𝑦)𝚂(𝑥) with 𝑔+ ∈ 𝐻 1
𝑝𝑒𝑟(Σ).

Remark 6.1.2. This assumption is justified by the observations in Chapter 5, if the source term 𝑓Ω
satisfies supp 𝑓Ω ∩ Σ = ∅. Nevertheless, the content of this chapter seems valid even for source
term which does not vanish near the interface.

Remark 6.1.3. Given 𝛼(𝑥, 𝑦) = 𝚛(𝑦)𝑥 as in Chapter 5, we proved the limiting absorption principle
when the absorption is set as 𝚛(𝑦) (𝑥 + 𝑖𝜈). Then, notice that the absorption principle is set slightly
differently in Assumption 6.1.1, since it reads 𝚛(𝑦)𝑥 + 𝑖𝜈.

We identify the function 𝑢+𝑟𝑒𝑔 with a pair 𝐮+ = (𝑢+𝑟𝑒𝑔|Ω𝑝
, 𝑢+𝑟𝑒𝑔|Ω𝑛

) ∈ 𝑄. For generic 𝑔(𝑦), we

use the notation 𝑠𝑔(𝑥, 𝑦) = 𝑔(𝑦)𝚂(𝑥) as introduced in (4.7). First, 𝑢+ is one of the solutions of the
problem

|
|
|
|
|
|
|
|

find 𝑢 ∈ 𝐿2(Ω) such that

− div(𝛼∇𝑢) − 𝜔2𝑢 = 𝑓Ω in Ω,

𝛼𝜕𝑛𝑢 + 𝑖𝜆𝑢 = 𝑓Γ on Γ𝑛 ∪ Γ𝑝,

𝑢(𝑥, 0) = 𝑢(𝑥, 𝐿), (𝛼𝜕𝑦)𝑢(𝑥, 0) = (𝛼𝜕𝑦)𝑢(𝑥, 𝐿), 𝑥 ∈ (−𝑎, 𝑎),

(6.3)

see proposition 6.2.1 below. The aim of this chapter is to find and analyze a variational problem
for which 𝑢+ ≡ (𝐮+, 𝑔+), as defined in assumption 6.1.1, constitutes a solution.

Let 𝑢 ∈ 𝐻 1
1/2(Ω𝑗) be such that div (𝛼∇𝑢) ∈ 𝐿2(Ω𝑗) and periodic boundary conditions are imposed

between {(𝑥, 𝑦) ∶ 𝑦 = 0} and {(𝑥, 𝑦) ∶ 𝑦 = 𝐿}. Then, Green’s identity gives for 𝑣 ∈ 𝐻 1
1/2(Ω𝑗)

−∫
Ω𝑗

div (𝛼∇𝑢) 𝑣d𝐱 = ∫
Ω𝑗

𝛼∇𝑢 ⋅ ∇𝑣d𝐱 − ∫
Γ𝑗
𝛼𝜕𝑛𝑢𝑣ds.

Given the absorbing boundary conditions of the problem, the sesquilinear form associated to the
problem (6.3) which operates on the regular part is

𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯) ≔ ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

(𝛼∇𝑢𝑗 ⋅ ∇𝑣𝑗 − 𝜔2𝑢𝑗𝑣𝑗) d𝐱 + 𝑖𝜆 ∫
Γ𝑗
𝑢𝑗𝑣𝑗ds, 𝐮, 𝐯 ∈ 𝑄. (6.4)
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Next, let 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟(Σ) be such that div (𝛼∇𝑠𝑔) ∈ 𝐿2(Ω)1. Unfortunately, Green’s identity cannot

be applied since 𝛼 |𝜕𝑥𝑠𝑔|
2
∉ 𝐿1(Ω). However, we have 𝜕𝑥 (𝛼𝜕𝑥𝑠𝑔) ∈ 𝐿2(Ω), 𝛼 |𝜕𝑦𝑠𝑔|

2
∈ 𝐿1(Ω), and

these two quantities involve only 𝑔 and its derivative 𝜕𝑦𝑔. Therefore, integrating by parts only
along the 𝑦-direction gives, for 𝑣 ∈ 𝐻 1

1/2(Ω𝑗)

−∫
Ω𝑗

div (𝛼∇𝑠𝑔) 𝑣d𝐱 = −∫
Ω𝑗

𝜕𝑥 (𝛼𝜕𝑥𝑠𝑔) 𝑣d𝐱 + ∫
Ω𝑗

𝛼𝜕𝑦𝑠𝑔𝜕𝑦𝑣d𝐱.

Notice that the two last integrals are well-defined for all 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟(Σ). With this observation, one

can define a variational formulation of (6.3) with 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟(Σ) by integrating by parts only along

the 𝑦-direction, to be compared with 𝑔 ∈ 𝐻 2
𝑝𝑒𝑟(Σ) in [49]. Then, multiplying (6.3) by a test function

𝐯 ∈ 𝑄, integrating by parts along the 𝑦-direction, and taking into account the absorbing boundary
conditions of the problem, we obtain the sesquilinear form associated with the problem that
operates on the singular part 𝑠𝑔. For 𝑔 ∈ 𝐻 1

per(Σ) and 𝐯 ∈ 𝑄, this sesquilinear form is given by:

𝑏(1)𝑠𝑖𝑛𝑔(𝑔, 𝐯) ≔ ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

(𝛼𝜕𝑦𝑠𝑔𝜕𝑦𝑣𝑗 + (−𝜕𝑥(𝛼𝜕𝑥𝑠𝑔) − 𝜔2𝑠𝑔)𝑣𝑗) d𝐱 + ∫
Γ𝑗
(𝛼𝜕𝑛𝑠𝑔 + 𝑖𝜆𝑠𝑔)𝑣𝑗ds. (6.5)

Hence, the variational problem associated to the problem (6.3) is

|
find (𝐮, 𝑔) ∈ 𝑄 × 𝐻 1

𝑝𝑒𝑟(Σ) such that

𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔(𝑔, 𝐯) = ℓ(1)(𝐯), ∀𝐯 ∈ 𝑄,
(6.6)

where the left-hand side is for 𝐯 ∈ 𝑄

ℓ(1)(𝐯) ≔ ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝑓Ω𝑣𝑗d𝐱 + ∫
Γ𝑗
𝑓Γ𝑣𝑗ds. (6.7)

Unfortunately, the previous problem is not well-posed. As a matter of fact, the operator 𝙱(1)𝑟𝑒𝑔 ∶ 𝑄 →
𝑄′ associated to 𝑏(1)𝑟𝑒𝑔 is invertible, see [49, propositions 4]. As a consequence, for all 𝑔 ∈ 𝐻 1

𝑝𝑒𝑟(Ω),
there is a unique 𝐮(𝑔) such that for all 𝐯 ∈ 𝑄

𝑏(1)𝑟𝑒𝑔(𝐮(𝑔), 𝐯) = ℓ(1)(𝐯) − 𝑏(1)𝑠𝑖𝑛𝑔(𝑔, 𝐯).

A natural way to recover the well-posedness is to add a new condition to the problem. Therefore,
following the approach of [49], the subsequent section is devoted to establishing this new condition,
leading to the formulation of a mixed variational problem.

Remark 6.1.4. It does not seem possible to further reduce the regularity of 𝑔 compared to [49]
because its first derivative 𝜕𝑦𝑔 appears in the first term of (6.5).

6.2 Construction of a mixed problem

6.2.1 Properties of the limiting absorption solution

In order to derive a new problem solved by the absorption solution 𝑢+, we show in this paragraph
some simple properties of 𝑢+. Let us introduce the variational formulation for (6.1):

|
find 𝑢𝜈 ∈ 𝐻 1(Ω) such that

𝑏𝜈(𝑢, 𝑣) = ℓ(1)(𝑣), ∀𝑣 ∈ 𝐻 1(Ω)
(6.8)

1Notice that this implies 𝑔 ∈ 𝐻 2(Σ).
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with
𝑏𝜈(𝑢, 𝑣) ≔ ∫

Ω
[(𝛼 + 𝑖𝜈) ∇𝑢 ⋅ ∇𝑣 − 𝜔2𝑢𝑣] d𝐱 + 𝑖𝜆 ∑

𝑗∈{𝑝,𝑛}
∫
Γ𝑗
𝑢𝑣ds, (6.9)

and
ℓ(1)(𝑣) = ∫

Ω
𝑓Ω𝑣d𝐱 + ∫

Γ𝑝∪Γ𝑛
𝑓Γ𝑣ds. (6.10)

Proposition 6.2.1. Let 𝑢+ ≡ (𝐮+, 𝑔+) ∈ 𝑄 × 𝐻 1
𝑝𝑒𝑟(Σ) be governed by the assumption 6.1.1. Then, for

all 𝐯 ∈ 𝑄,

𝑏(1)𝑟𝑒𝑔 (𝐮+, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔+, 𝐯) = ℓ(1) (𝐯) . (6.11)

Moreover, 𝑢+ solves (6.3) in the sense of distributions.

The proof this proposition relies on two technical lemmas.

Lemma 6.2.2. Let 𝜈 > 0, and 𝑢𝜈 satisfy (6.1). Under assumption 6.1.1, there holds

(𝛼 + 𝑖𝜈)∇𝑢𝜈
𝐿2(Ω)
−−−−−→
𝜈→0+

𝛼∇(𝑢+𝑟𝑒𝑔 + 𝑢+𝑠𝑖𝑛𝑔).

Proof. Until the end of the proof, we write ‖⋅‖ for the 𝐿2(Ω)-norm and ‖⋅‖∞ for the 𝐿∞(Ω)-norm.
We split the proof into two steps.

Step 1. Proof that 𝜈‖∇𝑢𝜈‖ → 0 as 𝜈 → 0+. We test the equation (6.9) with 𝑣 𝜈 = 𝑢𝜈 and take the
imaginary part of the resulting expression. This yields

𝜈 ‖∇𝑢𝜈‖2 + 𝜆 ‖𝑢𝜈‖2𝐿2(Γ𝑝∪Γ𝜈) ≤ ‖𝑓Ω‖ ‖𝑢𝜈‖ + ‖𝑓Γ‖𝐿2(Γ𝑝∪Γ𝑛)‖𝑢
𝜈‖𝐿2(Γ𝑝∪Γ𝜈).

Then, using Young’s inequality, one obtains

𝜈 ‖∇𝑢𝜈‖2 ≤ ‖𝑓Ω‖ ‖𝑢𝜈‖ + ‖𝑓Γ‖𝐿2(Γ𝑝∪Γ𝑛) ‖𝑢
𝜈‖𝐿2(Γ𝑝∪Γ𝜈) − 𝜆 ‖𝑢𝜈‖2𝐿2(Γ𝑝∪Γ𝜈)

≤ ‖𝑓Ω‖ ‖𝑢𝜈‖ +
1
4𝜆

‖𝑓Γ‖2𝐿2(Γ𝑝∪Γ𝑛) +
2𝜆
2
‖𝑢𝜈‖2𝐿2(Γ𝑝∪Γ𝜈) − 𝜆 ‖𝑢𝜈‖2𝐿2(Γ𝑝∪Γ𝜈)

≤ ‖𝑓Ω‖ ‖𝑢𝜈‖ +
1
4𝜆

‖𝑓Γ‖2𝐿2(Γ𝑝∪Γ𝑛).

Finally, thanks to assumption 6.1.1, ‖𝑢𝜈‖ → ‖𝑢+‖ as 𝜈 → 0+, and therefore 𝜈 ‖∇𝑢𝜈‖ → 0.

Step 2. Proof that 𝛼∇𝑢𝜈 → 𝛼∇𝑢+ in 𝐿2(Ω). We will show that (𝛼∇𝑢𝜈𝑛)𝑛∈ℕ is a Cauchy sequence
for all (𝜈𝑛)𝑛∈ℕ ⊂ ℝ+, s.t. lim

𝑛→+∞
𝜈𝑛 = 0. Since we know that (𝑢𝜈𝑛)𝑛∈ℕ and (𝜈𝑛∇𝑢𝜈𝑛)𝑛∈ℕ are Cauchy

sequences in 𝐿2(Ω), let us denote 𝑒𝑛𝑚 = 𝑢𝜈𝑛 − 𝑢𝜈𝑚 and 𝐞̃𝑛𝑚 = 𝜈𝑛∇𝑢𝜈𝑛 − 𝜈𝑚∇𝑢𝜈𝑚 . Then, we want to
control 𝛼∇𝑒𝑛𝑚.

For this we consider the difference of (6.9) written for 𝜈 = 𝜈𝑛 and 𝜈 = 𝜈𝑚, namely

𝑏𝜈𝑛(𝑢𝜈𝑛 , 𝑣) − 𝑏𝜈𝑚(𝑢𝜈𝑚 , 𝑣) = ∫
Ω
[𝛼∇𝑒𝑛𝑚 ⋅ ∇𝑣 + 𝑖𝐞̃𝑛𝑚 ⋅ ∇𝑣 − 𝜔2𝑒𝑛𝑚𝑣] d𝐱 + 𝑖𝜆 ∫

Γ𝑝∪Γ𝑛
𝑒𝑛𝑚𝑣 ds = 0 (6.12)

We test the equation (6.12) with 𝑣 = 𝛼𝑒𝑛𝑚, which yields

∫
Ω
|𝛼∇𝑒𝑛𝑚|2d𝐱 + ∫

Ω
[𝛼∇𝑒𝑛𝑚 ⋅ 𝑒𝑛𝑚∇𝛼 + 𝑖𝐞̃𝑛𝑚 ⋅ (𝛼∇𝑒𝑛𝑚 + 𝑒𝑛𝑚∇𝛼) − 𝜔2𝛼|𝑒𝑛𝑚|2] d𝐱

+ 𝑖𝜆 ∫
Γ𝑝∪Γ𝑛

𝛼|𝑒𝑛𝑚|2 ds = 0
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Taking the real part of the above, and using the Cauchy-Schwarz inequality to bound sign-
indefinite terms yields:

∫
Ω
|𝛼∇𝑒𝑛𝑚|2d𝐱 ≤ ∫

Ω
[|𝛼∇𝑒𝑛𝑚 ⋅ 𝑒𝑛𝑚∇𝛼| + |𝐞̃𝑛𝑚 ⋅ (𝛼∇𝑒𝑛𝑚 + 𝑒𝑛𝑚∇𝛼)| + 𝜔2|𝛼 ||𝑒𝑛𝑚|2] d𝐱

≤ ‖∇𝛼‖∞ ‖𝛼∇𝑒𝑛𝑚‖ ‖𝑒𝑛𝑚‖ + ‖𝐞̃𝑛𝑚‖ (‖𝛼∇𝑒𝑛𝑚‖ + ‖∇𝛼‖∞‖𝑒𝑛𝑚‖) + 𝜔2‖𝛼‖∞‖𝑒𝑛𝑚‖2.

With the help of the Young inequality, we obtain the following bound:

‖𝛼∇𝑒𝑛𝑚‖ ≤ 𝐶 (‖𝑒𝑛𝑚‖ + ‖𝐞̃𝑛𝑚‖) ,

where the constant 𝐶 depends on ‖𝛼‖∞, ‖∇𝛼‖∞ and 𝜔2 only. Because 𝜈‖∇𝑢𝜈‖ → 0 as 𝜈 → 0+ and 𝑢𝜈

converges in 𝐿2(Ω) as 𝜈 → 0+, we conclude that (𝛼∇𝑢𝜈𝑛)𝑛∈ℕ is an 𝐿2(Ω)-Cauchy sequence, and
thus converges. Evidently, its limit is 𝛼∇𝑢+; this follows from the following expression (which
allows to define the distribution 𝛼∇𝑣 for 𝑣 ∈ 𝐿2(Ω) and 𝛼 ∈ 𝐶1(Ω)):

𝛼∇𝑢𝜈 = ∇(𝛼𝑢𝜈) − 𝑢𝜈∇𝛼.

We have that 𝑢𝜈∇𝛼 → 𝑢+∇𝛼 in 𝐿2(Ω); similarly, 𝛼𝑢𝜈 → 𝛼𝑢+, thus, in the sense of distributions,
∇(𝛼𝑢𝜈) → ∇(𝛼𝑢+). Finally, by the uniqueness of the distributional limit, we conclude with the
desired result.

Remark 6.2.3. Let 𝒪 ⊂ Ω be an open set such that 𝒪∩Σ = ∅. Since there is a constant 𝐶𝒪 such that
|𝛼 | > 𝐶𝒪 > 0, the norms ‖⋅‖𝐻 1

1/2(𝒪)
and ‖⋅‖𝐻 1(𝒪) are equivalent. Therefore, previous lemma shows

that 𝑢𝜈 → 𝑢+ in 𝐻 1(𝒪), and in particular, by continuity of the trace application, 𝑢𝜈|Γ𝑝,𝑛 → 𝑢+|Γ𝑝,𝑛
in 𝐿2 (Γ𝑝,𝑛).

Let 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟 (Σ). Recall the “singularity with absorption”

𝑠𝜈𝑔(𝑥, 𝑦) = 𝑔(𝑦) log (𝑥 + 𝑖𝜈
𝚛(𝑦)

) (6.13)

defined in (4.8). We obviously have 𝑠𝜈𝑔 ∈ 𝐻 1(Ω), i.e., 𝑠𝜈𝑔 is not singular, but it approaches the
singularity 𝑠𝑔 as 𝜈 goes to 0+, as can be seen in the following lemma.

Lemma 6.2.4. Given 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟(Σ), the following limits hold in 𝐿2(Ω) as 𝜈 → 0+:

𝑠𝜈𝑔 → 𝑠𝑔, 𝜕𝑦𝑠𝜈𝑔 → 𝜕𝑦𝑠𝑔,

(𝛼 + 𝑖𝜈)𝜕𝑥𝑠𝜈𝑔 → 𝛼𝜕𝑥𝑠𝑔, 𝜕𝑥((𝛼 + 𝑖𝜈)𝜕𝑥𝑠𝜈𝑔) → 𝜕𝑥(𝛼𝜕𝑥𝑠𝑔).

Proof. By direct computation, we have

(𝛼 + 𝑖𝜈) 𝜕𝑥𝑠𝜈𝑔 = 𝑔(𝑦)𝚛(𝑦) 𝛼 + 𝑖𝜈
𝚛(𝑦)𝑥 + 𝑖𝜈

𝜕𝑦𝑠𝜈𝑔 = 𝜕𝑦𝑔(𝑦) log (𝑥 + 𝑖𝜈
𝚛(𝑦)

) − 𝑔(𝑦)
𝑖𝜈𝜕𝑦𝚛(𝑦)

𝚛(𝑦)(𝚛(𝑦)𝑥 + 𝑖𝜈)

𝜕𝑥 ((𝛼 + 𝑖𝜈)𝜕𝑥𝑠𝜈𝑔) = 𝑔(𝑦)𝚛(𝑦)
𝚛(𝑦)(𝜕𝑥𝛼 𝑥 − 𝛼) + 𝑖𝜈(𝜕𝑥𝛼 − 𝚛(𝑦))

(𝚛(𝑦)𝑥 + 𝑖𝜈)2
,

so that the convergence holds almost everywhere. In order to use the Lebesgue’s dominated
convergence theorem, it suffices to check that all functions above are 𝐿2-integrable uniformly
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with respect to 𝜈. Recall that we have 𝛼(𝑥, 𝑦) = 𝚛(𝑦)𝑥 + 𝒪(𝑥2) in a neighborhood of the interface.
The following ratios are easily bounded:

| 𝛼 + 𝑖𝜈
𝚛𝑥 + 𝑖𝜈

| ≲ 1, |
𝜕𝑥𝛼 𝑥 − 𝛼
(𝚛𝑥 + 𝑖𝜈)2

|
2
≲ 1,

and the convergence holds for (𝛼 + 𝑖𝜈)𝜕𝑥𝑠𝜈𝑔. On the other hand, we have

∫
|𝑥 |<𝑎

∫
𝑦
|𝜈𝑔

𝜕𝑦𝚛
𝚛(𝚛𝑥 + 𝑖𝜈)

|
2
d𝐱 = ∫

𝑦
|
𝑔𝜕𝑦𝚛
𝚛

|
2

∫
|𝑥 |<𝑎

dx

1 + (𝚛𝑥𝜈 )
2 dy ≤ 𝜈𝜋 ∫

𝑦

|𝑔|2(𝜕𝑦𝚛)2

𝚛3
dy −−−−→

𝜈→0
0,

∫
|𝑥 |<𝑎

∫
𝑦
|𝜈𝑔𝚛

𝜕𝑥𝛼 − 𝚛
(𝚛𝑥 + 𝑖𝜈)2

|
2
d𝐱 ≲ ∫

𝑦
|𝑔|2 ∫

|𝑥 |<𝑎

(𝚛𝑥𝜈 )
2
dx

(1 + (𝚛𝑥𝜈 )
2
)
2 dy ≲ 𝜈 ∫

𝑦

|𝑔|2

𝚛
dy −−−−→

𝜈→0
0.

This allows us to conclude about 𝜕𝑦𝑠𝜈𝑔 and 𝜕𝑥 ((𝛼 + 𝑖𝜈)𝜕𝑥𝑠𝜈𝑔).

A natural corollary of previous lemmas is the following.

Corollary 6.2.5. Let 𝜈 > 0 and 𝑢𝜈 satisfy (6.1). Under assumption 6.1.1, 𝑢𝜈 ∈ 𝐻 1(Ω) can be
decomposed as

𝑢𝜈 = 𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+ ,

and it holds that
𝑢𝜈𝑟𝑒𝑔

𝐿2(Ω)
−−−−−→
𝜈→0+

𝑢+𝑟𝑒𝑔, and (𝛼 + 𝑖𝜈) ∇𝑢𝜈𝑟𝑒𝑔
𝐿2(Ω)
−−−−−→
𝜈→0+

𝛼∇𝑢+𝑟𝑒𝑔.

Proof. By lemma 6.2.4, 𝑠𝜈𝑔+ → 𝑠𝑔+ and 𝛼∇𝑠𝜈𝑔+ → 𝛼∇𝑠𝑔+ in 𝐿2(Ω)-norm as 𝜈 → 0+. Therefore, with
the assumption 6.1.1 and lemma 6.2.2, the result holds.

Proof of proposition 6.2.1. First, because of assumption 6.1.1, the limiting absorption solution
𝑢+ = 𝑢+𝑟𝑒𝑔 + 𝑠+𝑔 satisfies

− div(𝛼∇𝑢+) − 𝜔2𝑢+ = 𝑓Ω in 𝒟 ′(Ω). (6.14)

Moreover, using the decomposition of lemma 6.2.5 and the fact that 𝜕𝑥(𝛼𝜕𝑥𝑠+𝑔 ) ∈ 𝐿2(Ω), we
conclude that

𝚍+ ≔ − div(𝛼∇𝑢+) + 𝜕𝑥(𝛼𝜕𝑥𝑠+𝑔 ) (6.15)

= − div (𝛼∇𝑢+𝑟𝑒𝑔) − 𝜕𝑦 (𝛼𝜕𝑦𝑠+𝑔 ) ∈ 𝐿2(Ω).

Notice that div (𝛼∇𝑢+𝑟𝑒𝑔) does not necessarily belong to 𝐿2(Ω), so that the integration by parts must
be done carefully. Testing on Ω𝑝 the equation (6.14) with 𝑣𝑝 ∈ 𝐶∞𝑝𝑒𝑟 ,𝑦 (Ω𝑝), using the boundary
conditions of (6.3) and integrating by parts yields (cf. (6.15), corollary 6.2.5 and the periodicity of
𝑔+):

∫
Ω𝑝

{𝛼∇𝑢+𝑟𝑒𝑔 ⋅ ∇𝑣𝑝 + 𝛼𝜕𝑦𝑠𝑔+𝜕𝑦𝑣𝑝 − 𝜕𝑥 (𝛼𝜕𝑥𝑠𝑔+) 𝑣𝑝 − 𝜔2 (𝑢+𝑟𝑒𝑔 + 𝑠𝑔+) 𝑣𝑝} d𝐱

− ∫
Γ𝑝
𝛼𝜕𝐧𝑢+𝑟𝑒𝑔𝑣𝑝ds − ⟨𝛼𝜕𝐧𝑢+𝑟𝑒𝑔, 𝛾0𝑣𝑝⟩(𝐻 1/2

𝑝𝑒𝑟 (Σ))
′
,𝐻 1/2

𝑝𝑒𝑟 (Σ)
= ∫

Ω𝑝

𝑓Ω𝑣𝑝d𝐱 + ∫
Γ𝑝
𝑓Γ𝑣𝑝ds. (6.16)
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Here 𝐧 = (𝑛𝑥, 𝑛𝑦) is the outgoing unit normal fromΩ𝑝. Finally, it remains to show that 𝛼𝜕𝐧𝑢+𝑟𝑒𝑔|Σ =
0 and 𝛼𝜕𝐧𝑢+𝑟𝑒𝑔 = 𝑓Γ − 𝛼𝜕𝐧 − 𝑖𝜆 (𝑢+𝑟𝑒𝑔 + 𝑠𝑔+) on Γ𝑝, see the boundary conditions of the problem (6.3).

Let 𝜑1 ∈ 𝒞 1
0 ((−𝑎, 𝑎) ; ℝ), 𝜑1 = 1 in the vicinity of 0 and 𝜑(𝑥, 𝑦) = 𝜑1(𝑥) be a truncation function

as in Definition 4.2.2 and its scaled version 𝜑𝜀(𝑥, 𝑦) = 𝜑 (𝑥𝜀 , 𝑦). Integrating by parts as above with
𝑣𝑝𝜑𝜀, we then have for all 𝜀 > 0,

⟨𝛼𝜕𝐧𝑢+𝑟𝑒𝑔, 𝛾0𝑣𝑝⟩(𝐻 1/2
𝑝𝑒𝑟 (Σ))

′
,𝐻 1/2

𝑝𝑒𝑟 (Σ)

= −∫
Ω𝑝

{𝚍+ 𝑣𝑝𝜑𝜀 + 𝛼𝜕𝑦(𝑢+𝑝 + 𝑠+𝑔 ) 𝜕𝑦(𝜑𝜀𝑣𝑝)} d𝐱 + ∫
Ω𝑝

𝛼𝜕𝑥𝑢+𝑝 𝜕𝑥(𝑣𝑝𝜑𝜀)d𝐱.

It suffices to consider the case 𝜀 → 0. The convergence of the first integral to 0 follows from
Lebesgue’s dominated convergence theorem and the fact that 𝜕𝑦𝜑𝜀 = 0. Finally, as for the second
integral, we can estimate it as follows (where Ω𝜀

𝑝 = Ω𝑝 ∩ supp 𝜑𝜀):

|∫
Ω𝑝

𝛼𝜕𝑥𝑢+𝑝 𝜕𝑥(𝑣𝑝𝜑𝜀)d𝐱| ≤ |∫
Ω𝜀
𝑝

𝛼𝜕𝑥𝑢+𝑝 𝜕𝑥𝑣𝑝 𝜑𝜀d𝐱| + |∫
Ω𝜀
𝑝

𝛼𝜕𝑥𝑢+𝑝 𝑣𝑝 𝜕𝑥𝜑𝜀 d𝐱|

≤ 𝐶 (‖𝑢+𝑝 ‖𝐻 1
1/2(Ω

𝜀
𝑝)
‖𝑣𝑝‖𝐻 1

1/2(Ω
𝜀
𝑝)
+ ‖𝑢+𝑝 ‖𝐻 1

1/2(Ω
𝜀
𝑝)
‖𝑣𝑝‖𝐿∞(Ω𝜀

𝑝)
‖𝜑𝜀‖𝐻 1

1/2(Ω
𝜀
𝑝)) .

Remark that there exists 𝐶1 > 0, s.t. for all 𝜀 > 0, ‖𝜑𝜀‖𝐻 1
1/2(Ω

𝜀
𝑝) ≤ 𝐶1. Since, additionally, 𝑢+𝑝 ∈

𝐻 1
1/2(Ω𝑝), we conclude that, as 𝜀 → 0+,

|∫
Ω𝑝

𝛼𝜕𝑥𝑢+𝑝 𝜕𝑥(𝑣𝑝𝜑𝜀)d𝐱| ⟶ 0.

Therefore, 𝛼𝜕𝐧𝑢+𝑟𝑒𝑔|Σ = 0.

Let 𝑣𝑝 ∈ 𝒞∞
𝑝𝑒𝑟 ,𝑦 (Ω𝑝) such that supp 𝑣𝑝 ∩ Σ = ∅. Since 𝑢𝜈 = 𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+ is the solution of the

problem with absorption 6.8, we have

∫
Ω𝑝

𝑓Ω𝑣𝑝d𝐱 + ∫
Γ𝑝
𝑓Γ𝑣𝑝ds

= ∫
Ω𝑝

{(𝛼 + 𝑖𝜈) ∇𝑢𝜈 ⋅ ∇𝑣𝑝 − 𝜔2𝑢𝜈𝑣𝑝} d𝐱 + 𝑖𝜆 ∫
Γ𝑝
𝑢𝜈𝑣𝑝ds

= ∫
Ω𝑝

{(𝛼 + 𝑖𝜈) ∇𝑢𝜈𝑟𝑒𝑔 ⋅ ∇𝑣𝑝 + (𝛼 + 𝑖𝜈) 𝜕𝑦𝑠𝜈𝑔+ ⋅ 𝜕𝑦𝑣𝑝 − 𝜕𝑥 ((𝛼 + 𝑖𝜈) 𝜕𝑥𝑠𝜈𝑔+) 𝑣𝑝} d𝐱

− ∫
Ω𝑝

𝜔2 (𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+) 𝑣𝑝d𝐱 + ∫
Γ𝑝
[(𝛼 + 𝑖𝜈) 𝜕𝐧𝑠𝜈𝑔+ − 𝑖𝜆𝑠𝜈𝑔+] 𝑣𝑝ds + 𝑖𝜆 ∫

Γ𝑝
𝑢𝜈𝑟𝑒𝑔𝑣𝑝ds.

Combining the last identity with (6.16) yields

∫
Γ𝑝
𝛼𝜕𝐧𝑢+𝑟𝑒𝑔𝑣𝑝ds = ∫

Ω𝑝

{[𝛼∇𝑢+𝑟𝑒𝑔 − (𝛼 + 𝑖𝜈) ∇𝑢𝜈𝑟𝑒𝑔] ⋅ ∇𝑣𝑝 + [𝛼𝜕𝑦𝑠𝑔+ − (𝛼 + 𝑖𝜈) 𝜕𝑦𝑠𝜈𝑔+] 𝜕𝑦𝑣𝑝

− [𝜕𝑥 (𝛼𝜕𝑥𝑠𝑔+) − 𝜕𝑥 ((𝛼 + 𝑖𝜈) 𝜕𝑥𝑠𝜈𝑔+)] 𝑣𝑝 − 𝜔2 (𝑢+𝑟𝑒𝑔 + 𝑠𝑔+ − 𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+) 𝑣𝑝} d𝐱

+ ∫
Γ𝑝
[𝑓Γ − 𝑖𝜆𝑢𝜈𝑟𝑒𝑔 − (𝛼 + 𝑖𝜈) 𝜕𝐧𝑠𝜈𝑔+ − 𝑖𝜆𝑠𝜈𝑔+] 𝑣𝑝ds.
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As 𝜈 → 0+, the integral on Ω𝑝 vanishes thanks to lemmas 6.2.2, 6.2.4, and assumption 6.1.1.
Obviously,

(𝛼 + 𝑖𝜈) 𝜕𝐧𝑠𝜈𝑔+ − 𝑖𝜆𝑠𝜈𝑔+
𝐿2(Γ𝑝)
−−−−−→
𝜈→0+

𝛼𝜕𝐧𝑠𝑔+ − 𝑖𝜆𝑠𝑔+ ,

and 𝑢𝜈𝑟𝑒𝑔|Γ𝑝
→ 𝑢+𝑟𝑒𝑔|Γ𝑝

by continuity of the trace, see remark 6.2.3. As a result, we have

𝛼𝜕𝐧 (𝑢+𝑟𝑒𝑔 + 𝑠𝑔+) + 𝑖𝜆 (𝑢+𝑟𝑒𝑔 + 𝑠𝑔+) = 𝑓Γ, on Γ𝑝.

Hence, for all 𝑣𝑝 ∈ 𝐶∞𝑝𝑒𝑟 ,𝑦 (Ω𝑝), it holds that

∫
Ω𝑝

{𝛼∇𝑢+𝑟𝑒𝑔 ⋅ ∇𝑣𝑝 + 𝛼𝜕𝑦𝑠𝑔+𝜕𝑦𝑣𝑝 − 𝜕𝑥 (𝛼𝜕𝑥𝑠𝑔+) 𝑣𝑝 − 𝜔2 (𝑢+𝑟𝑒𝑔 + 𝑠𝑔+) 𝑣𝑝} d𝐱

+ 𝑖𝜆 ∫
Γ𝑝
(𝑢+𝑝 + 𝑠+𝑔 ) 𝑣𝑝ds + ∫

Γ𝑝
𝛼𝜕𝑛𝑠𝑔+𝑣𝑝ds = ∫

Ω𝑝

𝑓Ω𝑣𝑝d𝐱 + ∫
Γ𝑝
𝑓Γ𝑣𝑝ds.

Repeating the argument for 𝑣𝑛 ∈ 𝐶∞𝑝𝑒𝑟 ,𝑦 (Ω𝑛), we conclude that a similar identity holds true in Ω𝑛.
By density of the functions 𝐶∞𝑝𝑒𝑟 ,𝑦 (Ω𝑛) × 𝐶∞𝑝𝑒𝑟 ,𝑦 (Ω𝑝) in 𝑄, we arrive at the formulation (6.11).

Remark 6.2.6. The proof of proposition 6.2.1 illustrates that, for 𝑢 ∈ 𝐻 1
1/2(Ω𝑗) such that div(𝛼∇𝑢) ∈

𝐿2(Ω), 𝛼𝜕𝑥𝑢|Σ = 0 is a natural consequence. On another hand, for 𝑔 ∈ 𝐿2(Σ), we have 𝛼𝜕𝑥𝑠𝑔| = 𝑔𝚛.

The “energy” localized near the interface Σ of the singular part is finite. Recall the 𝐿2(Σ)-
weighted norm ‖𝑔‖𝚛 = (∫Σ |𝑔|

2𝚛ds)1/2 and the associated inner product (⋅, ⋅)𝚛.

Lemma 6.2.7. Let 𝑔 ∈ 𝐻 1(Σ) and let 𝜑 be a truncation function as in definition 4.2.2. Then the
following limit holds:

lim
𝜈→0+∫Ω

𝜈|∇𝑠𝜈𝑔|2𝜑 d𝐱 = 𝜋 ‖𝑔‖2𝚛 . (6.17)

Proof. By direct computation, we have

𝜕𝑥𝑠𝜈𝑔(𝑥, 𝑦) =
𝑔(𝑦) 𝚛(𝑦)
𝚛(𝑦)𝑥 + 𝑖𝜈

, 𝜕𝑦𝑠𝜈𝑔(𝑥, 𝑦) = 𝜕𝑦𝑔(𝑦) log (𝑥 + 𝑖𝜈
𝚛(𝑦)

) −
𝑖𝜈𝑔(𝑦)𝚛′(𝑦)

𝚛(𝑦) (𝚛(𝑦)𝑥 + 𝑖𝜈)
.

Then, one can check that

∫
Ω
𝜈|𝜕𝑥𝑠𝜈𝑔|2𝜑 d𝐱 = ∫

Σ
|𝑔|2𝚛 (∫

𝑎

−𝑎

𝜑1(𝑥)
(𝚛𝑥/𝜈)2 + 1

𝚛dx
𝜈

) dy −−−−−→
𝜈→0+

𝜋 ‖𝑔‖2𝚛 ,

whereas, using Young’s inequality and that | 𝜈
𝚛(𝑦)𝑥+𝑖𝜈 |

2
≤ 1,

∫
Ω
𝜈|𝜕𝑦𝑠𝜈𝑔|2𝜑 d𝐱 ≤ 2𝜈 ∫

Ω
(|𝜕𝑦𝑔(𝑦) log (𝑥 + 𝑖𝜈

𝚛(𝑦)
)|
2
+ |

𝑔(𝑦)𝚛′(𝑦)
𝚛(𝑦)

|
2
) 𝜑(𝑥, 𝑦) d𝐱 −−−−−→

𝜈→0+
0.

One can also characterize the “energy” localized near the interface Σ of the regular part.

Proposition 6.2.8. Let (𝑢𝜈)𝜈 > 0 be a family governed by (6.1) fulfilling assumption 6.1.1, and
𝜑 ∈ 𝒞 1

𝑝𝑒𝑟 ,𝑦 (Ω; ℝ) be such that supp 𝜑 ∩ (Γ𝑝 ∪ Γ𝑛) = ∅. Then the following limit holds:

lim
𝜈→0+∫Ω

𝜈 |∇𝑢𝜈𝑟𝑒𝑔|
2
𝜑 d𝐱 = 0.
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Proof. Firstly, remark that ∫Ω 𝜈 |∇𝑢𝜈𝑟𝑒𝑔|
2
𝜑 d𝐱 = Imℰ 𝜈

𝑟𝑒𝑔 with

ℰ 𝜈
𝑟𝑒𝑔 = ∫

Ω
{(𝛼 + 𝑖𝜈) |∇𝑢𝜈𝑟𝑒𝑔|

2
𝜑 − 𝜔2|𝑢𝜈𝑟𝑒𝑔|2𝜑} d𝐱.

Therefore, using that ∇𝑢𝜈𝑟𝑒𝑔𝜑 = ∇(𝑢𝜈𝑟𝑒𝑔𝜑)−𝑢𝜈𝑟𝑒𝑔∇𝜑 and that 𝑢𝜈 = 𝑢𝜈𝑟𝑒𝑔+𝑠𝜈𝑔 is a solution of the problem
with absorption (6.8), one has

ℰ 𝜈
𝑟𝑒𝑔 = ∫

Ω
{(𝛼 + 𝑖𝜈)∇𝑢𝜈𝑟𝑒𝑔 ⋅ ∇(𝑢𝜈𝑟𝑒𝑔𝜑) − 𝜔2𝑢𝜈𝑟𝑒𝑔𝑢𝜈𝑟𝑒𝑔𝜑} d𝐱 − ∫

Ω
(𝛼 + 𝑖𝜈)∇𝑢𝜈𝑟𝑒𝑔 ⋅ 𝑢𝜈𝑟𝑒𝑔∇𝜑d𝐱

= ∫
Ω
𝑓Ω𝑢𝜈𝑟𝑒𝑔𝜑d𝐱 − ∫

Ω
{(𝛼 + 𝑖𝜈)∇𝑠𝜈𝑔 ⋅ ∇(𝑢𝜈𝑟𝑒𝑔𝜑) − 𝜔2𝑠𝜈𝑔𝑢𝜈𝑟𝑒𝑔𝜑} d𝐱 − ∫

Ω
(𝛼 + 𝑖𝜈)∇𝑢𝜈𝑟𝑒𝑔 ⋅ 𝑢𝜈𝑟𝑒𝑔∇𝜑d𝐱

= ∫
Ω
𝑓Ω𝑢𝜈𝑟𝑒𝑔𝜑d𝐱 − ∫

Ω
{(𝛼 + 𝑖𝜈)𝜕𝑦𝑠𝜈𝑔 𝜕𝑦(𝑢𝜈𝑟𝑒𝑔𝜑) − 𝜕𝑥 ((𝛼 + 𝑖𝜈)𝜕𝑥𝑠𝜈𝑔) 𝑢𝜈𝑟𝑒𝑔𝜑 − 𝜔2𝑠𝜈𝑔𝑢𝜈𝑟𝑒𝑔𝜑} d𝐱

− ∫
Ω
(𝛼 + 𝑖𝜈)∇𝑢𝜈𝑟𝑒𝑔 ⋅ 𝑢𝜈𝑟𝑒𝑔∇𝜑d𝐱,

where an integration by parts in the 𝑥-direction is made in the last equality. According to lemma
6.2.4 and lemma 6.2.5, and the definitions (6.4), (6.5), (6.7) of the forms 𝑏(1)𝑟𝑒𝑔, 𝑏

(1)
𝑠𝑖𝑛𝑔 and ℓ(1), ℰ 𝜈

𝑟𝑒𝑔
converges as 𝜈 → 0+ to

ℰ+
𝑟𝑒𝑔 = ℓ(1)(𝐮+𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔(𝑔+, 𝐮+𝜑) − ∑

𝑗∈{𝑝,𝑛}
∫
Ω𝑗

𝛼∇𝑢+𝑗 ⋅ 𝑢+𝑗 ∇𝜑d𝐱

= 𝑏(1)𝑟𝑒𝑔(𝐮+, 𝐮+𝜑) − ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝛼∇𝑢+𝑗 ⋅ 𝑢+𝑗 ∇𝜑d𝐱

= ∫
Ω
{𝛼 |∇𝑢+𝑗 |

2
𝜑 − 𝜔2|𝑢+𝑗 |2𝜑} d𝐱,

where we used the proposition 6.2.1, the identity ∇(𝑢+𝑗 𝜑) − 𝑢+𝑗 ∇𝜑 = ∇𝑢+𝑗 𝜑 and the condition on
the disjoint supports. Finally, considering Imℰ+

𝑟𝑒𝑔 gives the desired result.

6.2.2 From the energy functional to the mixed formulation

The aim of this section is to find a well-posed problem that is satisfied by the limiting absorption
solution 𝑢+ defined in Assumption 6.1.1. We start by rewriting proposition 6.2.8 for a given
𝜑 ∈ 𝒞 1

𝑝𝑒𝑟 ,𝑦 (Ω; ℝ), following Assumption 4.2.2, i.e., 𝜕𝑦𝜑 = 0 and 𝜑 = 1 in the vicinity of the
interface Σ, as

lim
𝜈→0+∫Ω

𝜈 |∇ (𝑢𝜈 − 𝑠𝜈𝑔+)|
2
𝜑 d𝐱 = 0.

Then, the idea developed below involves introducing an unknown ℎ ∈ 𝐻 1
𝑝𝑒𝑟(Σ) with the aim of

constructing an ”energy” functional. The minimum of this functional should be achieved by 𝑢+,
characterized by (𝑢+𝑟𝑒𝑔, 𝑔+), where ℎ = 𝑔+. Next, the functional will be differentiated, which will
result in a mixed problem.

Let (𝑢𝜈)𝜈>0 be such that 𝑢𝜈 ∈ 𝐻 1
𝑝𝑒𝑟 ,𝑦(Ω) and − div((𝛼 + 𝑖𝜈)∇𝑢𝜈) − 𝜔2𝑢𝜈 = 𝑓Ω in supp 𝜑, and

ℎ ∈ 𝐻 1
𝑝𝑒𝑟(Σ). Moreover, we suppose 𝑢𝜈 → 𝐮 + 𝑠𝑔 in 𝐿2(Ω) as 𝜈 → 0+, like in assumption 6.1.1.

Notice that we do not impose 𝑢𝜈 to be necessarily the solution of the problem with absorption
(6.1). Though it may seem strange, but − div((𝛼 + 𝑖𝜈)∇𝑢𝜈) − 𝜔2𝑢𝜈 = 𝑓Ω must be seen more as a
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constraint under which the argument below is developed. Of course, (𝑢𝜈)𝜈>0 as in assumption
6.1.1 obey the constraint. We define the following the “energy” functional as in Proposition 6.2.8:

𝒥 𝜈(𝑢𝜈, ℎ) = ∫
Ω
𝜈 |∇ (𝑢𝜈 − 𝑠𝜈ℎ)|

2 𝜑 d𝐱 = Imℰ 𝜈, where

ℰ 𝜈 = ∫
Ω
[(𝛼(𝑥, 𝑦) + 𝑖𝜈) |∇ (𝑢𝜈 − 𝑠𝜈ℎ)|

2 − 𝜔2 |𝑢𝜈 − 𝑠𝜈ℎ|
2] 𝜑 d𝐱.

Lemma 6.2.9. Let (𝑢𝜈)𝜈>0 be as in assumption 6.1.1 and ℎ ∈ 𝐻 1
𝑝𝑒𝑟(Σ). Then,

0 ≤ lim
𝜈→0+

𝒥 𝜈(𝑢𝜈, ℎ) ≤ 𝜋 ‖𝑔+ − ℎ‖2𝚛 .

Proof. The positiveness comes by definition. Beginning with the following triangular inequality

(∫
Ω
𝜈 |∇ (𝑢𝜈 − 𝑠𝜈ℎ)|

2 𝜑 d𝐱)
1/2

= (∫
Ω
𝜈 |∇ (𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+−ℎ)|

2
𝜑 d𝐱)

1/2

≤ (∫
Ω
𝜈 |∇𝑢𝜈𝑟𝑒𝑔|

2
𝜑 d𝐱)

1/2
+ (∫

Ω
𝜈 |∇𝑠𝜈𝑔+−ℎ|

2
𝜑 d𝐱)

1/2
,

Lemma 6.2.7 and Proposition 6.2.8 enable us to conclude regarding the upper bound.

In order to compute the limit of 𝒥 𝜈(𝑢𝜈, ℎ), we will integrate by parts the expression for
ℰ 𝜈 as in the proof of proposition 6.2.8. First, using the fact that 𝜕𝑦𝜑 = 0, and the identity
(∇𝑈 )𝜑 = ∇ (𝑈𝜑) − 𝑈∇𝜑,one can rewrite ℰ 𝜈 as

ℰ 𝜈 = ∫
Ω
[(𝛼(𝑥, 𝑦) + 𝑖𝜈)∇ (𝑢𝜈 − 𝑠𝜈ℎ) ⋅ ∇ ((𝑢𝜈 − 𝑠𝜈ℎ) 𝜑) − 𝜔2 (𝑢𝜈 − 𝑠𝜈ℎ) ((𝑢𝜈 − 𝑠𝜈ℎ) 𝜑)] d𝐱

−∫
Ω
[(𝛼(𝑥, 𝑦) + 𝑖𝜈)𝜕𝑥 (𝑢𝜈 − 𝑠𝜈ℎ) (𝑢𝜈 − 𝑠𝜈ℎ)𝜕𝑥𝜑] d𝐱.

Then we separate

ℰ 𝜈 = 𝑏𝜈(𝑢𝜈, (𝑢𝜈 − 𝑠𝜈ℎ)𝜑) − 𝑏𝜈(𝑠𝜈ℎ, (𝑢
𝜈 − 𝑠𝜈ℎ)𝜑) − 𝑐𝜈(𝑢𝜈 − 𝑠𝜈ℎ, 𝑢

𝜈 − 𝑠𝜈ℎ),

where
𝑐𝜈(𝑢, 𝑣) = ∫

Ω
(𝛼(𝑥, 𝑦) + 𝑖𝜈)𝜕𝑥𝑢𝑣 𝜕𝑥𝜑d𝐱.

Since − div((𝛼 + 𝑖𝜈)∇𝑢𝜈) − 𝜔2𝑢𝜈 = 𝑓Ω on supp 𝜑, 𝑏𝜈(𝑢𝜈, (𝑢𝜈 − 𝑠𝜈ℎ)𝜑) = ℓ(1) ((𝑢𝜈 − 𝑠𝜈ℎ)𝜑). Then, in the
view of the definition (6.7) of ℓ(1), Assumption 6.1.1 and Lemma 6.2.4, we have

𝑏𝜈(𝑢𝜈, (𝑢𝜈 − 𝑠𝜈ℎ)𝜑) −−−−−→𝜈→0+
ℓ(1) ((𝐮 + 𝑠𝑔−ℎ) 𝜑) . (6.18)

It remains to integrate by parts the term 𝑏𝜈(𝑠𝜈ℎ, (𝑢
𝜈 − 𝑠𝜈ℎ)𝜑), which is allowed since ℎ ∈ 𝐻 1

𝑝𝑒𝑟(Σ):

𝑏𝜈(𝑠𝜈ℎ, 𝜑(𝑢
𝜈 − 𝑠𝜈ℎ))

= ∫
Ω
{(𝛼(𝑥, 𝑦) + 𝑖𝜈)𝜕𝑦𝑠𝜈ℎ𝜕𝑦 ((𝑢𝜈 − 𝑠𝜈ℎ) 𝜑) − 𝜕𝑥 ((𝛼(𝑥, 𝑦) + 𝑖𝜈)𝜕𝑥𝑠𝜈ℎ) (𝑢𝜈 − 𝑠𝜈ℎ)𝜑 − 𝜔2𝑠𝜈ℎ(𝑢𝜈 − 𝑠𝜈ℎ)𝜑} d𝐱.

Therefore, since 𝑢𝜈 → 𝐮 + 𝑠𝑔 in 𝐿2(Ω) as 𝜈 → 0+, and using lemma 6.2.4, we have that

𝑏𝜈(𝑠𝜈ℎ, (𝑢
𝜈 − 𝑠𝜈ℎ)𝜑) −−−−−→𝜈→0+

𝑏(1)𝑠𝑖𝑛𝑔 (ℎ, (𝐮 + 𝑠𝑔−ℎ) 𝜑) ,

𝑐𝜈(𝑢𝜈 − 𝑠𝜈ℎ, 𝑢
𝜈 − 𝑠𝜈ℎ) −−−−−→𝜈→0+

𝑐 (𝐮 + 𝑠𝑔−ℎ, 𝐮 + 𝑠𝑔−ℎ) ,
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where the last sesquilinear forms is given by

𝑐(𝑢, 𝑣) = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝛼(𝑥, 𝑦)𝜕𝑥𝑢𝑣𝜕𝑥𝜑d𝐱.

We observe that the limits depend on the triple (𝐮, 𝑔, ℎ). Then we define

𝒥 + (𝐮, 𝑔, ℎ) ≔ − Im [𝑏(1)𝑠𝑖𝑛𝑔 (ℎ, (𝐮 + 𝑠𝑔−ℎ) 𝜑) + 𝑐 (𝐮 + 𝑠𝑔−ℎ, 𝐮 + 𝑠𝑔−ℎ) − ℓ(1) ((𝐮 + 𝑠𝑔−ℎ) 𝜑)] , (6.19)

From this point on, one finds by integrating by parts that 𝒥 + (𝐮+, 𝑔+, 𝑔+) = 0 (this is reminiscent
of the proof of lemma 6.2.8). Since we know that the limit of𝒥 𝜈(𝑢𝜈, ℎ) is non-negative, we conclude
that (𝐮+, 𝑔+, 𝑔+) is a minimizer of 𝒥 +. It should be noted that the existence of other minimizers
is uncertain.

The next step of the construction is computing the differential of 𝒥 +. Rather than directly
computing the differential with the functional (6.19), let’s consider the following simplified
example:

𝒥 (𝑢, 𝑔) = Im (𝑏(𝑢, 𝑔) − ℓ(𝑢)) .

This is a dummy functional with dummy variables 𝑢, 𝑔, a dummy sesquilinear form 𝑏, and a
dummy antilinear form. Let 𝑣 , 𝑘 be the dual variables associated to 𝑢, 𝑔, and 𝑡 > 0. By definition,

d𝒥 ((𝑢, 𝑔) , (𝑣 , 𝑘)) = lim
𝑡→0

𝒥 ((𝑢, 𝑔) + 𝑡(𝑣 , 𝑘)) − 𝒥 (𝑢, 𝑔).

Then, one can easily expand

𝒥 ((𝑢, 𝑔) + 𝑡(𝑣 , 𝑘)) = 𝒥 (𝑢, 𝑔) + 𝑡 Im [𝑏(𝑢, 𝑘) − 𝑏(𝑣 , 𝑔) − ℓ(𝑣)] + 𝑡2𝑏(𝑣 , 𝑘),

so that d𝒥 ((𝑢, 𝑔) , (𝑣 , 𝑘)) = Im [𝑏(𝑢, 𝑘) − 𝑏(𝑣 , 𝑔) − ℓ(𝑣)]. Applying the computation above to (6.19)
gives

d𝒥 + ((𝐮, 𝑔, ℎ) , (𝐯, 𝑘, 𝑙)) = − Im [𝑎(1) ((𝐮, 𝑔, ℎ) , (𝐯, 𝑘, 𝑙)) − ℓ(1) ((𝐯 + 𝑠𝑘−𝑙) 𝜑)] ,

where 𝑎(1) is a sesquilinear form defined on 𝑉 (1) × 𝑉 (1), with 𝑉 (1) ≔ 𝑄 × 𝐻 1
𝑝𝑒𝑟(Σ) × 𝐻 1

𝑝𝑒𝑟(Σ) by

𝑎(1) ((𝐮, 𝑔, ℎ) , (𝐯, 𝑘, 𝑙))

= 𝑏(1)𝑠𝑖𝑛𝑔 (ℎ, (𝐯 + 𝑠𝑘−𝑙) 𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑙, (𝐮 + 𝑠𝑔−ℎ) 𝜑) + 𝐶𝜑 (𝐮 + 𝑠𝑔−ℎ, 𝐯 + 𝑠𝑘−𝑙)

= ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

(𝛼𝜕𝑦𝑠ℎ𝜕𝑦 ((𝑣𝑗 + 𝑠𝑘−𝑙) 𝜑) − 𝜕𝑥 (𝛼𝜕𝑥𝑠ℎ) (𝑣𝑗 + 𝑠𝑘−𝑙) 𝜑 − 𝜔2𝑠ℎ(𝑣𝑗 + 𝑠𝑘−𝑙) 𝜑) d𝐱

−∫
Ω𝑗

(𝛼𝜕𝑦 ((𝑢𝑗 + 𝑠𝑔−ℎ) 𝜑) 𝜕𝑦𝑠𝑙 − (𝑢𝑗 + 𝑠𝑔−ℎ) 𝜕𝑥 (𝛼𝜕𝑥𝑠𝑙)𝜑 − 𝜔2 (𝑢𝑗 + 𝑠𝑔−ℎ) 𝑠𝑙𝜑) d𝐱

+∫
Ω𝑗

𝛼 [𝜕𝑥 (𝑢𝑗 + 𝑠𝑔−ℎ) (𝑣𝑗 + 𝑠𝑘−𝑙) − (𝑢𝑗 + 𝑠𝑔−ℎ) 𝜕𝑥 (𝑣𝑗 + 𝑠𝑘−𝑙)] 𝜕𝑥𝜑d𝐱,

(6.20)

where

𝐶𝜑 (𝑈 , 𝑉) ≔ ∫
Ω
𝛼 [𝜕𝑥𝑈 𝑉 − 𝑈 𝜕𝑥𝑉] 𝜕𝑥𝜑d𝐱.

Remark 6.2.10. Notice that 𝒥 + (𝐮, 𝑔, ℎ) = Im [ℓ(1) ((𝐮 + 𝑠𝑔−ℎ) 𝜑)] −
1
2𝑖𝑎

(1) ((𝐮, 𝑔, ℎ) , (𝐮, 𝑔, ℎ)).
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Finally, since we want (𝐮, 𝑔) to be a weak solution of (6.3), we define

𝑏(1) ((𝐮, 𝑔, ℎ), 𝐯) ≔ 𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔(𝑔, 𝐯), (6.21)

and we introduce the mixed formulation, as in [49]:

|
|
|
|
|
|

Find (𝐮, 𝑔, ℎ) ∈ 𝑉 (1), 𝛌 ∈ 𝑄 such that

𝑎(1) ((𝐮, 𝑔, ℎ) , (𝐯, 𝑘, 𝑙)) + 𝑏(1) ((𝐯, 𝑘, 𝑙), 𝛌) = ℓ(1) ((𝐯 + 𝑠𝑘−𝑙) 𝜑) , ∀ (𝐯, 𝑘, 𝑙) ∈ 𝑉 ,

𝑏(1) ((𝐮, 𝑔, ℎ), 𝛍) = ℓ(1)(𝛍), ∀𝐯 ∈ 𝑄.

(6.22)

Notice the introduction of a Lagrange multiplier 𝛌 ∈ 𝑄. At some point, the operator 𝙱(1) ∶ 𝑉 (1) ↦
𝑄′ associated to the form 𝑏(1) will be used. The mixed problem will be studied in details, in
particular its existence and uniqueness, see section 6.4. The tools used for this study are developed
in the next section 6.3.

Remark 6.2.11. Notice that the right-hand side of the first equation vanishes if 𝑓Ω = 0, as in [49].
An important point in the development done in this part is the existence of the limit ℓ(1) (𝑠𝜈𝑔𝜑) in
(6.18). On the other hand, this approach cannot be carried out if we only had ℓ(1) ∈ 𝑄′. Indeed, in
that case ℓ(1)(𝑠𝑘) would not be defined since 𝑠𝑔 ∉ 𝑄.

Remark 6.2.12. A similar development above can be conducted for all 𝜑 ∈ 𝒞 1
𝑝𝑒𝑟 ,𝑦 (Ω; ℝ) such that

supp 𝜑 ∩ (Γ𝑝 ∪ Γ𝑛) = ∅. On the other hand, a particular and convenient choice of 𝜑 satisfying
Assumption 4.2.2 is

𝜑(𝑥, 𝑦) = {
1 + cos(2𝜋𝑥)

2
, |𝑥| ≤ 1

2 ,

0, otherwise.

6.3 Jump and technical results

6.3.1 Weak jump

It is possible to define a notion of a jump in a weak sense for functions 𝐮 ∈ 𝑄 which satisfy the
constraint in the mixed formulation (6.22). We introduce the following space of regular functions
on the interface

𝐻 1
𝑝𝑒𝑟(Σ, 𝚛) ≔ {𝑔 ∈ 𝐿2(Σ) ∶ 𝜕𝑦𝑔 ∈ 𝐿2(Σ), 𝑔(0) = 𝑔(𝐿)} ,

paired with the norm

‖𝑔‖𝐻 1(Σ,𝚛) = (∫
Σ
(|𝜕𝑦𝑔(𝑦)|2 + |𝑔(𝑦)|2) 𝚛(𝑦)dy)

1/2
.

For the sake of conciseness, ⟨⋅, ⋅⟩Σ denotes ⟨⋅, ⋅⟩(𝐻 1
𝑝𝑒𝑟(Σ,𝚛))

′
,𝐻 1

𝑝𝑒𝑟(Σ,𝚛)
until the end of this chapter.

Notice that, given 𝑔 ∈ 𝐿2(Σ) and 𝑘 ∈ 𝐻 1(Σ, 𝚛), we also set ⟨𝑔, 𝑘⟩Σ = (𝑔, 𝑘)𝚛.
Let us define the following class of sequences of cutoff functions.

Definition 6.3.1. Given a cutoff function 𝜑 following Definition 4.2.2, let (𝜑𝑚)𝑚∈ℕ be defined by
𝜑𝑚(𝑥, 𝑦) = 𝜑(𝑚𝑥, 𝑦).
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Then, given ℓ ∈ 𝑄′, 𝜓 ∈ 𝒞 1 (Ω) and 𝑘 ∈ 𝐻 1
𝑝𝑒𝑟(Σ), we denote

ℓ∞(𝜓𝑠𝑘) ≔ lim
𝑚→+∞

ℓ(𝜓𝑠𝑘(1 − 𝜑𝑚)) (6.23)

if this limit exists and is independent of the choice of the sequence of cutoff functions (𝜑𝑚)𝑚∈ℕ
satisfying the above definition. Obviously, ℓ∞ will not necessarily exist for all ℓ ∈ 𝑄′. But notice
that ℓ(1)∞ , associated to ℓ(1) exists, see Remark 6.2.11.

Therefore, assuming that ℓ∞ exists, the definition of the jump is formalized in the statement
of the following lemma.

Lemma 6.3.2. Let 𝐮 ∈ 𝑄, 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟 (Σ) and ℓ ∈ 𝑄′ related by

𝑏(1)𝑟𝑒𝑔 (𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝐯) = ℓ (𝐯) , ∀𝐯 ∈ 𝑄. (6.24)

Let (𝜑𝑚)𝑚∈ℕ ⊂ 𝒞 2
𝑝𝑒𝑟 ,𝑦(Ω) be as in definition 6.3.1. If ℓ∞(𝑠𝑘) = lim𝑚→+∞ ℓ (𝑠𝑔 (1 − 𝜑𝑚)) exists and

does not depend on the choice of (𝜑𝑚)𝑚, then jump [𝐮]Σ of the regular part is defined as

∀𝑘 ∈ 𝐻 1
𝑝𝑒𝑟(Σ), ⟨[𝐮]Σ, 𝑘⟩Σ ≔ lim

𝑚→+∞
∑

𝑗∈{𝑝,𝑛}
∫
Ω𝑗

𝑢𝑗(−𝜕𝑥 (𝛼𝜕𝑥 (𝑠𝑘𝜑𝑚)))𝑑x, (6.25)

and it is finite for all 𝑘. The limit is independent of the choice of (𝜑𝑚)𝑚, and it holds for all 𝑘 ∈ 𝐻 1
𝑝𝑒𝑟(Σ)

⟨[𝐮], 𝑘⟩(𝐻 1
𝑝𝑒𝑟(Σ,𝚛))

′
,𝐻 1

𝑝𝑒𝑟(Σ,𝚛)
= 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘) + 2𝑖𝜆 ∑

𝑗∈{𝑝,𝑛}
∫
Γ𝑗
𝑢𝑗𝑠𝑘ds − ℓ∞ (𝑠𝑘) . (6.26)

Before proving the lemma, let us make a few comments. For piecewise regular 𝐮 ∈ 𝐻 1(Ω𝑝) ×
𝐻 1(Ω𝑛), the above definition of the jump coincides with the classical definition [𝐮]Σ = 𝛾0(𝑢𝑝) −
𝛾0(𝑢𝑛), where 𝛾0 denotes the trace on Σ, seen either as a part of Ω𝑝, or of Ω𝑛. Indeed, in this case
(6.25) yields

∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝑢𝑗(−𝜕𝑥 (𝛼𝜕𝑥 (𝑠𝑘𝜑𝑚)))𝑑x

= ∫
Σ
[𝛾0(𝑢𝑝) − 𝛾0(𝑢𝑛)] (𝛼𝜕𝑥(𝑠𝑘𝜑𝑚))|Σ𝑑𝑦 + ∑

𝑗∈{𝑝,𝑛}
∫
Ω𝑗

𝛼𝜕𝑥𝑢𝑗𝜕𝑥(𝑠𝑘𝜑𝑚)𝑑x.

The first term in the right-hand side of the above can be made more explicit. Indeed, by the
regularity assumption on 𝛼 and using an explicit form of 𝑠𝑘, we have 𝛼𝜕𝑥 (𝑠𝑘𝜑𝑚) ∈ 𝐻 1(Ω) and
𝛼 𝜕𝑥(𝑠𝑘𝜑𝑚)|Σ = 𝑘(𝑦)𝚛(𝑦). Observing that ‖𝛼𝜕𝑥(𝑠𝑘𝜑𝑛)‖𝐿2(Ω𝑗) ≲ ‖𝑘‖𝐿2(Σ), the second term is bounded
with the help of Cauchy-Schwarz inequality:

|∫
Ω𝑗

𝛼𝜕𝑥𝑢𝑗𝜕𝑥(𝑠𝑘𝜑𝑚)𝑑x| ≤ ‖𝑢𝑗‖𝐻 1(Ω𝑗∩supp 𝜑𝑚)
‖𝛼𝜕𝑥(𝑠𝑘𝜑𝑚)‖𝐿2(Ω𝑗)

≲ ‖𝑢𝑗‖𝐻 1(Ω𝑗∩supp 𝜑𝑚)
‖𝑘‖𝐿2(Σ) −−−−−−→𝑚→+∞

0,

so that
∑

𝑗∈{𝑝,𝑛}
∫
Ω𝑗

𝑢𝑗(−𝜕𝑥 (𝛼𝜕𝑥 (𝑠𝑘𝜑𝑚)))𝑑x = ∫
Σ
[𝐮]𝑘 𝚛𝑑𝑦 + 𝑜𝑚→+∞(1).

On the other hand, the jump defined by (6.25) is not finite for all 𝐮 ∈ 𝑄; take e.g., 𝐮 = (log |log |𝑥 || , 0).
Finally, we note that, even for 𝐮 satisfying (6.24), the jump [𝐮]Σ is defined in a very weak sense,
since it is taken in the dual space of 𝐻 1

𝑝𝑒𝑟(Σ, 𝑟).
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Proof of lemma 6.3.2. We test (6.24) with 𝐯 = 𝑠𝑘(1 − 𝜑𝑚) ∈ 𝑄. On one hand, we have

𝑏(1)𝑟𝑒𝑔 (𝐮, 𝑠𝑘 (1 − 𝜑𝑚)) −−−−−−→𝑚→+∞
ℓ∞ (𝑠𝑘) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘) , (6.27)

where ℓ∞ is defined in (6.23). On the other hand, integrating by parts in the 𝑥-direction the term
𝑏(1)𝑟𝑒𝑔 (𝐮, 𝑠𝑘 (1 − 𝜑𝑚)) gives:

𝑏(1)𝑟𝑒𝑔 (𝐮, 𝑠𝑘 (1 − 𝜑𝑚))

= ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

{𝑢𝑗(−𝜕𝑥 (𝛼𝜕𝑥 (𝑠𝑘 (1 − 𝜑𝑚)))) + 𝛼𝜕𝑦𝑢𝑗𝜕𝑦 (𝑠𝑘 (1 − 𝜑𝑚)) − 𝜔2𝑢𝑗𝑠𝑘 (1 − 𝜑𝑚)} d𝐱

+ ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
(𝑢𝑗(𝛼𝜕𝑛𝑠𝑘) + 𝑖𝜆𝑢𝑗𝑠𝑘) ds

= 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮) + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗𝑠𝑘ds − ∑

𝑗∈{𝑝,𝑛}
∫
Ω𝑗

{𝛼𝜕𝑦𝑢𝑗𝜕𝑦𝑠𝑘 − 𝜔2𝑢𝑗𝑠𝑘} 𝜑𝑚d𝐱 − 𝐽𝑚,

where we used 𝜕𝑦𝜑𝑚 = 0 and with

𝐽𝑚 = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝑢𝑗(−𝜕𝑥𝛼𝜕𝑥 (𝑠𝑘𝜑𝑚))d𝐱,

cf. the definition of the jump (6.25). Next, using Lebesgue’s dominated convergence theorem
yields

− ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

{𝛼𝜕𝑦𝑢𝑗𝜕𝑦𝑠𝑘 − 𝜔2𝑢𝑗𝑠𝑘} 𝜑𝑚d𝐱 −−−−−→
𝑛→+∞

0,

so that
lim

𝑚→+∞
𝑏(1)𝑟𝑒𝑔 (𝐮, 𝑠𝑘 (1 − 𝜑𝑚)) = 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮) + 2𝑖𝜆 ∑

𝑗∈{𝑝,𝑛}
∫
Γ𝑗
𝑢𝑗𝑠𝑘ds − lim

𝑛→+∞
𝐽𝑚.

Replacing the left-hand side of the above by (6.27) shows that lim
𝑚→+∞

𝐽𝑚 is finite and, with the
definition (6.25), the jump of 𝐮 is expressed as

⟨[𝐮], 𝑘⟩(𝐻 1
𝑝𝑒𝑟(Σ,𝚛))

′
,𝐻 1

𝑝𝑒𝑟(Σ,𝚛)
= 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘) + 2𝑖𝜆 ∑

𝑗∈{𝑝,𝑛}
∫
Γ𝑗
𝑢𝑗𝑠𝑘ds − ℓ∞ (𝑠𝑘) .

As claimed, the last expression does not depend on the chosen function sequence (𝜑𝑚)𝑚.

Remark 6.3.3. The definition of the jump (6.25) does not depend on the jump part of the singularity
𝑖𝜋𝑘(𝑦)𝟙𝑥<0. Indeed, in (6.25), 𝑠𝑘 can be replaced by 𝑘(𝑦) log |𝑥 | or 𝑘(𝑦) (log |𝑥 | − 𝑖𝜋𝟙𝑥<0). This holds
because, given (𝜑𝑚)𝑚 as in lemma 6.3.2, we have, by the Cauchy-Schwarz inequality and after
integration by parts in the 𝑥-direction,

| ∫
Ω
𝑢𝜕𝑥(𝛼𝜕𝑥(𝟙𝑥<0𝜑𝑚𝑘(𝑦)))d𝐱| = | ∫

Ω𝑛∩supp 𝜑𝑚
𝑢𝑛𝜕𝑥(𝛼𝜕𝑥(𝜑𝑚𝑘(𝑦)))d𝐱|

= | ∫
Ω𝑛∩supp 𝜑𝑚

𝛼𝜕𝑥𝑢𝑛𝜕𝑥𝜑𝑚𝑘(𝑦)d𝐱| ≲ ‖𝑢𝑛‖𝐻 1
1/2(Ω𝑛∩supp 𝜑𝑚) ‖𝑘‖𝐿2(Σ) −−−−−−→𝑚→+∞

0.

Therefore, the jump can also be computed as

⟨[𝐮], 𝑘⟩Σ = lim
𝑛→+∞

∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝑢𝑗(−𝜕𝑥 (𝛼𝜕𝑥 (𝑘(𝑦) (log |𝑥 | − 𝑖𝜋𝟙𝑥<0) 𝜑𝑚)))𝑑x. (6.28)

This identity will be useful later, see section 6.3.2.
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6.3. Jump and technical results

6.3.2 Jump of the limiting absorption solution

Given 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟(Σ), let us introduce some “artificial singularities” with non-zero absorption 𝜆

𝑠𝜆𝑔(𝑥, 𝑦) = 𝑔(𝑦) log (𝑥 + 𝑖𝜆
𝚛(𝑦)

) .

For positive 𝜆, one recovers the “singularities with absorption” of (6.13). We remark that one has
convergence almost everywhere as 𝜈 → 0+:

𝑠𝜈𝑔
𝑎.𝑒.

−−−−−→
𝜈→0+

𝑠+𝑔 ≔ 𝑔 (log |𝑥 | + 𝑖𝜋𝟙𝑥<0) , and 𝑠−𝜈𝑔
𝑎.𝑒.

−−−−−→
𝜈→0+

𝑠−𝑔 ≔ 𝑔 (log |𝑥 | − 𝑖𝜋𝟙𝑥<0) .

We then have the following lemma (which generalizes lemma 6.2.4 to the case of artificial singu-
larities), whose proof is left to the reader.

Lemma 6.3.4. Given 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟(Σ), the following limits hold in 𝐿2(Ω) as 𝜈 → 0+:

𝑠±𝜈𝑔 → 𝑠±𝑔 , 𝜕𝑦𝑠±𝜈𝑔 → 𝜕𝑦𝑠±𝑔 ,

(𝛼 ± 𝑖𝜈)𝜕𝑥𝑠±𝜈𝑔 → 𝛼𝜕𝑥𝑠±𝑔 , 𝜕𝑥((𝛼 ± 𝑖𝜈)𝜕𝑥𝑠±𝜈𝑔 ) → 𝜕𝑥(𝛼𝜕𝑥𝑠±𝑔 ).

Note that 𝑠𝑔 = 𝑠+𝑔 . We adopt this convention from now on. From the above lemma, it follows
in particular that for all 𝜓 ∈ 𝐶∞ (Ω; ℝ),

𝜕𝑥((𝛼 ± 𝑖𝜈)𝜕𝑥(𝑠±𝜈𝑔 𝜓)) −−−−−→
𝜈→0+

𝜕𝑥(𝛼𝜕𝑥(𝑠±𝑔 𝜓)) in 𝐿2(Ω). (6.29)

Next, we show that the limiting absorption solution (𝐮+, 𝑔+) from assumption 6.1.1 has a vanishing
jump.

Proposition 6.3.5. Let (𝐮+, 𝑔+) ∈ 𝑄 × 𝐻 1
𝑝𝑒𝑟(Σ) be as in assumption 6.1.1. Then [𝐮+]Σ = 0.

Proof. Let 𝐮+, 𝑔+ be like in assumption 6.1.1. To prove that [𝐮+]Σ = 0, we will use the identity
(6.28) defining the jump with 𝑠−𝑘 , for a given 𝑘 ∈ 𝐻 1

𝑝𝑒𝑟(Σ). More precisely, let 𝜑 be a truncation
function as in the definition 4.2.2 and, for 𝜀 > 0, 𝜑𝜀(𝑥, 𝑦) = 𝜑 (𝑥𝜀 , 𝑦). We will show that the quantity
below is well-defined and converges to 0 as 𝜀 → 0+:

𝐽𝜀(𝑘) = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝑢+𝑗 (−𝜕𝑥 (𝛼𝜕𝑥 (𝑠−𝑘 𝜑𝜀)))d𝐱.

We reexpress 𝐽𝜀(𝑘) with the help of (6.29) and the convergence (𝑢𝜈𝑟𝑒𝑔)𝜈 to 𝐮+ of Lemma 6.2.5:

𝐽𝜀(𝑘)= lim
𝜈→0+

𝐽 𝜈𝜀 (𝑘), with 𝐽 𝜈𝜀 (𝑘) = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝑢𝜈𝑟𝑒𝑔(−𝜕𝑥 ((𝛼 − 𝑖𝜈) 𝜕𝑥 (𝑠−𝜈𝑘 𝜑𝜀)))d𝐱 for 𝜀 > 0.

The main idea of the proof consists in reexpressing 𝐽 𝜈𝜀 via 𝑏𝜈(𝑢𝜈, 𝑠−𝜈𝑘 𝜑𝜀). Since 𝑢𝜈 verifies (6.1) and
is decomposed as 𝑢𝜈 = 𝑢𝜈𝑟𝑒𝑔 + 𝑠𝜈𝑔+ , defined in lemma 6.2.5,

𝑏𝜈(𝑢𝜈𝑟𝑒𝑔, 𝑠−𝜈𝑘 𝜑𝜀) + 𝑏𝜈(𝑠𝜈𝑔+ , 𝑠
−𝜈
𝑘 𝜑𝜀) = ℓ(1) (𝑠−𝜈𝑘 𝜑𝜀) . (6.30)

One has by, integrating by parts in the 𝑥-direction,

𝑏𝜈(𝑢𝜈𝑟𝑒𝑔, 𝑠−𝜈𝑘 𝜑𝜀) = ∫
Ω
𝜕𝑥𝑢𝜈𝑟𝑒𝑔(𝛼 − 𝑖𝜈) 𝜕𝑥 (𝑠−𝜈𝑘 𝜑𝜀)d𝐱 + ∫

Ω
[(𝛼 + 𝑖𝜈)𝜕𝑦𝑢𝜈𝑟𝑒𝑔𝜕𝑦(𝑠−𝜈𝑘 𝜑𝜀) − 𝜔2𝑢𝜈𝑟𝑒𝑔𝑠−𝜈𝑘 𝜑𝜀] d𝐱

= 𝐽 𝜈𝜀 (𝑘) + ∫
Ω
[(𝛼 + 𝑖𝜈)𝜕𝑦𝑢𝜈𝑟𝑒𝑔𝜕𝑦𝑠−𝜈𝑘 − 𝜔2𝑢𝜈𝑟𝑒𝑔𝑠−𝜈𝑘 ] 𝜑𝜀d𝐱.
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Indeed, the boundary terms vanish due to the choice of 𝜑 in the vicinity of Γ𝑛 and Γ𝑝. As 𝜈 → 0+,
by lemmas 6.2.5, 6.3.4 and the limit (6.29), it holds that

𝑏𝜈(𝑢𝜈𝑟𝑒𝑔, 𝑠−𝜈𝑘 𝜑𝜀) → 𝐽𝜀(𝑘) + 𝐼𝜀(𝑘), 𝐼𝜀(𝑘) = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

[𝛼𝜕𝑦𝑢+𝑗 𝜕𝑦𝑠−𝑘 − 𝜔2𝑢+𝑗 𝑠−𝑘 ] 𝜑𝜀d𝐱. (6.31)

Next let us consider the second term in (6.30). Performing once again integration by parts in the
𝑥-direction, one finds

𝑏𝜈(𝑠𝜈𝑔+ , 𝑠
−𝜈
𝑘 𝜑𝜀) = ∫

Ω
[(𝛼 + 𝑖𝜈) 𝜕𝑦𝑠𝜈𝑔+ 𝜕𝑦 (𝑠

−𝜈
𝑘 𝜑𝜀) + ((−𝜕𝑥 ((𝛼 + 𝑖𝜈) 𝜕𝑥𝑠𝜈𝑔+)) − 𝜔2𝑠𝜈𝑔+) (𝑠

−𝜈
𝑘 𝜑𝜀)] d𝐱,

and by lemma 6.3.4, as 𝜈 → 0+,

𝑏𝜈(𝑠𝜈𝑔+ , 𝑠
−𝜈
𝑘 𝜑𝜀) → 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔+, 𝑠−𝑘 𝜑𝜀) = ∫

Ω
[𝛼𝜕𝑦𝑠+𝑔+ 𝜕𝑦 (𝑠

−
𝑘 𝜑𝜀) − 𝜕𝑥 (𝛼𝜕𝑥𝑠+𝑔+) (𝑠

−
𝑘 𝜑𝜀) − 𝜔2𝑠+𝑔+(𝑠

−
𝑘 𝜑𝜀)] d𝐱.

(6.32)
Since 𝑠−𝜈𝑘 converges to 𝑠−𝑘 in 𝐿2(Ω) and by definition (6.7) of ℓ(1), lim𝜈→0+ ℓ(1) (𝑠−𝜈𝑘 𝜑𝜀) = ℓ(1) (𝑠−𝑘 𝜑𝜀).
Finally, by Lebesgue’s dominated convergence theorem, as 𝜀 → 0+, 𝐼𝜀(𝑘), 𝑏

(1)
𝑠𝑖𝑛𝑔 (𝑔+, 𝑠−𝑘 𝜑𝜀) and

ℓ(1) (𝑠−𝑘 𝜑𝜀) both go to 0. Therefore, combining (6.31) and (6.32) in (6.30), and taking 𝜀 → 0+, we
obtain that

lim
𝜀→0+

𝐽𝜀(𝑘) = 0,

which leads to the conclusion thanks to the alternate definition of the jump (6.28).

6.3.3 Green’s identities

Once the notion of jump defined, one next step is to extend the Green’s identities. Recall the
expression (6.20) of 𝑎(1) in which appears the following sesquilinear antihermitian form

𝐶𝜓 (𝑈 , 𝑉) = ∫
Ω
𝛼 [(∇𝑈 )𝑉 − 𝑈(∇𝑉 )] ⋅ ∇𝜓d𝐱, (6.33)

with 𝑈 = 𝐮 + 𝑠𝑔−ℎ and 𝑉 = 𝐯 + 𝑠𝑘−𝑙. The goal of this section is to express 𝐶𝜓 (𝑈 , 𝑉) using the

sesquilinear forms 𝑏(1)𝑟𝑒𝑔 and 𝑏(1)𝑠𝑖𝑛𝑔. The first step is the following manipulation, which will be used
elsewhere:

[∇𝑢𝑣 − 𝑢 ∇𝑣] ⋅ ∇𝜓 = ∇𝑢 ⋅ ∇(𝑣𝜓 ) − ∇𝑢 ⋅ ∇𝑣𝜓 − ∇(𝑢𝜓) ⋅ ∇𝑣 + ∇𝑢 ⋅ ∇𝑣𝜓

= ∇𝑢 ⋅ ∇(𝑣𝜓 ) − ∇(𝑢𝜓) ⋅ ∇𝑣.
(6.34)

Therefore, given a Lipschitz domain 𝒪 and 𝑢, 𝑣 smooth in 𝒪, we have

∫
𝒪
𝛼 [∇𝑢𝑣 − 𝑢∇𝑣] ⋅ ∇𝜓d𝐱 = ∫

𝒪
𝛼 [∇𝑢 ⋅ ∇(𝑣𝜓 ) − ∇(𝑢𝜓) ⋅ ∇𝑣] d𝐱. (6.35)

We observe that, depending on whether 𝑈, 𝑉 are regular, i.e., belonging to 𝐻 1
1/2(Ω𝑝)×𝐻 1

1/2(Ω𝑛),
or singular, i.e., of the form 𝑠𝑔, with 𝑔 ∈ 𝐻 1

𝑝𝑒𝑟(Σ), the expression (6.33) of 𝐶𝜓 (𝑈 , 𝑉) will obviously
change. There are three different cases:

• 𝑈, 𝑉 are both regular, in 𝑄, see proposition 6.3.6,
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• 𝑈, 𝑉 are both singular, i.e., 𝑈 = 𝑠𝑔 and 𝑉 = 𝑠𝑘, see proposition 6.3.8,

• 𝑈 is regular and 𝑉 is singular, see proposition 6.3.10.

The simplest case is when 𝑈 , 𝑉 ∈ 𝑄. According to the above, we reexpress the right-hand side
of the identity (6.35) with 𝒪 = int (Ω𝑝 ∪ Ω𝑛). Namely,

∫
𝒪
𝛼 [∇𝑈𝑉 − 𝑈∇𝑉] ⋅ ∇𝜓d𝐱 = ∫

𝒪
[𝛼∇𝑈 ⋅ ∇(𝑉 𝜓) − 𝜔2𝑈(𝑉 𝜓)] d𝐱. − ∫

𝒪
[𝛼∇(𝑈 𝜓) ⋅ ∇𝑉 − 𝜔2(𝑈 𝜓)𝑉] d𝐱.

(6.36)
Recalling the definition (6.4) of 𝑏(1)𝑟𝑒𝑔:

𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯) = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

(𝛼∇𝑢𝑗 ⋅ ∇𝑣𝑗 − 𝜔2𝑢𝑗𝑣𝑗) d𝐱 + 𝑖𝜆 ∫
Γ𝑗
𝑢𝑗𝑣𝑗ds,

one has the following proposition.

Proposition 6.3.6. Let 𝐮, 𝐯 ∈ 𝑄 and 𝜓 ∈ 𝒞 1
𝑝𝑒𝑟 ,𝑦 (Ω). Then

∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝛼 (∇𝑢𝑗𝑣𝑗 − 𝑢𝑗∇𝑣𝑗) ⋅ ∇𝜓d𝐱 = 𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯𝜓) − 𝑏(1)𝑟𝑒𝑔(𝐯, 𝐮𝜓) − 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗𝑣𝑗𝜓ds.

Let us now consider the second case, when 𝑈 and 𝑉 are both singular, that is 𝑈 = 𝑠𝑔 and
𝑉 = 𝑠𝑘. Evidently, we cannot apply (6.36) for 𝒪 = Ω𝑝,𝑛 and 𝜓 non-vanishing on the interface,
since the terms ∫Ω𝑝,𝑛

𝛼∇(𝑠𝑔𝜓) ⋅ ∇𝑠𝑘𝑑𝐱 and ∫Ω𝑝,𝑛
𝛼∇𝑠𝑔 ⋅ ∇(𝑠𝑘𝜓)d𝐱 are not defined. This difficulty can

be overcome by integrating by parts in the 𝑥-direction. Let 𝑢, 𝑣 be sufficiently smooth in 𝒪, then

∫
𝒪
𝛼 [∇𝑢𝑣 − 𝑢∇𝑣] ⋅ ∇𝜓d𝐱

= ∫
𝒪
𝛼 [𝜕𝑦𝑢 ⋅ 𝜕𝑦(𝑣𝜓 ) − 𝜕𝑦(𝑢𝜓 ) ⋅ 𝜕𝑦𝑣] d𝐱 + ∫

𝒪
[(−𝜕𝑥 (𝛼𝜕𝑥𝑢)) 𝑣𝜓 − (𝑢𝜓) (−𝜕𝑥 (𝛼𝜕𝑥𝑣))] d𝐱

+ ∫
𝜕𝒪

[(𝛼𝜕𝑛𝑢) 𝑣 − 𝑢(𝛼𝜕𝑛𝑣)] 𝜓ds
(6.37)

= ∫
𝒪
[𝛼𝜕𝑦𝑢𝜕𝑦 (𝑣𝜓) + (−𝜕𝑥 (𝛼𝜕𝑥𝑢) − 𝜔2𝑢) 𝑣𝜓] d𝐱 + ∫

𝜕𝒪
(𝛼𝜕𝑛𝑢) 𝑣𝜓ds

− ∫
𝒪
[𝛼𝜕𝑦 (𝑢𝜓) 𝜕𝑦𝑣 + (𝑢𝜓) (−𝜕𝑥 (𝛼𝜕𝑥𝑣) − 𝜔2𝑣)] d𝐱 − ∫

𝜕𝒪
𝑢(𝛼𝜕𝑛𝑣)𝜓ds.

(6.38)

Compare with the definition of 𝑏(1)𝑠𝑖𝑛𝑔:

𝑏(1)𝑠𝑖𝑛𝑔(𝑔, 𝐯) = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

[𝛼𝜕𝑦𝑠𝑔𝜕𝑦𝑣𝑗 + (−𝜕𝑥(𝛼𝜕𝑥𝑠𝑔) − 𝜔2𝑠𝑔)𝑣𝑗] d𝐱 + ∫
Γ𝑗
(𝛼𝜕𝑛𝑠𝑔 + 𝑖𝜆𝑠𝑔)𝑣𝑗ds.

Lemma 6.3.7. For 𝑔, 𝑘 ∈ 𝐻 1
𝑝𝑒𝑟(Σ) and 𝜓 ∈ 𝒞 1

𝑝𝑒𝑟 ,𝑦 (Ω; ℝ), for 𝑗 ∈ {𝑝, 𝑛}, it holds that

∫
Ω𝑗

𝛼 [𝜕𝑥𝑠𝑔𝑠𝑘 − 𝑠𝑔𝜕𝑥𝑠𝑘] 𝜕𝑥𝜓d𝐱 = ∫
Ω𝑗

[(−𝜕𝑥(𝛼𝜕𝑥𝑠𝑔)) 𝑠𝑘 − 𝑠𝑔(−𝜕𝑥(𝛼𝜕𝑥𝑠𝑘))] 𝜓d𝐱

+ ∫
Γ𝑗
[(𝛼𝜕𝑛𝑠𝑔)𝑠𝑘 − 𝑠𝑔(𝛼𝜕𝑛𝑠𝑘)] 𝜓ds − 𝜎𝑗 ∫

Σ
𝑔(𝑦)𝑘(𝑦)𝚛(𝑦)𝜓 (0, 𝑦) 𝑑𝑦,

where 𝜎𝑝 = 0 and 𝜎𝑛 = 2𝑖𝜋.
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Proof. Applying (6.37) in 𝒪 = Ω𝜀
𝑗 = {𝐱 ∈ Ω𝑗 ∶ dist(𝐱, Σ) > 𝜀}, 𝜀 > 0, 𝑗 ∈ {𝑝, 𝑛}, with 𝑢 = 𝑠𝑔 and

𝑣 = 𝑠𝑘 yields

∫
Ω𝜀
𝑗

𝛼 [𝑠𝑔𝜕𝑥𝑠𝑘 − 𝜕𝑥𝑠𝑔𝑠𝑘] 𝜕𝑥𝜓d𝐱 = ∫
Ω𝜀
𝑗

[𝑠𝑔(−𝜕𝑥(𝛼𝜕𝑥𝑠𝑘)) − 𝑠𝑘(−𝜕𝑥(𝛼𝜕𝑥𝑠𝑔))] 𝜓d𝐱

+ ∫
Γ𝑗
[𝑠𝑔(𝛼𝜕𝑛𝑠𝑘) − (𝛼𝜕𝑛𝑠𝑔)𝑠𝑘] 𝜓ds − 𝑎𝑗𝐼 𝜀𝑗 ,

with 𝑎𝑝 = 1 and 𝑎𝑛 = −1 and

𝐼 𝜀𝑗 = ∫
{𝑥=𝑎𝑗𝜀}

[𝑠𝑔(𝛼𝜕𝑥𝑠𝑘) − (𝛼𝜕𝑥𝑠𝑔)𝑠𝑘] 𝜓𝑑𝑦.

As 𝜀 → 0+, the volume integrals over Ω𝜀
𝑗 converge to the volume integrals over Ω𝑗, since the

integrands are obviously in 𝐿1(Ω𝑗). Let us compute the remaining limit lim
𝜀→0+

𝐼 𝜀𝑗 . Recall that
𝑠𝑔(𝑥, 𝑦) = 𝑔(𝑦)𝚂(𝑥) with 𝚂(𝑥) = log |𝑥 | + 𝑖𝜋𝟙𝑥<0. As 𝜀 → 0+,

𝐼 𝜀𝑗 = ∫
Σ
𝑔(𝑦)𝑘(𝑦)

𝛼(𝑎𝑗𝜀, 𝑦)
𝑎𝑗𝜀

[𝚂(𝑎𝑗𝜀) − 𝚂(𝑎𝑗𝜀)] 𝜓 (𝑎𝑗𝜀, 𝑦)𝑑𝑦 → 𝜎𝑗 ∫
Σ
𝑔(𝑦)𝑘(𝑦)𝚛(𝑦)𝜓 (0, 𝑦)𝑑𝑦,

where 𝜎𝑝 = 0, 𝜎𝑛 = 2𝑖𝜋.

The proposition below is a rewriting of formula (6.38) using the above lemma.

Proposition 6.3.8. Let 𝑔, 𝑘 ∈ 𝐻 1
𝑝𝑒𝑟 (Σ) and 𝜓 ∈ 𝒞 1

𝑝𝑒𝑟 ,𝑦 (Ω; ℝ). It holds that

∫
Ω
𝛼 [∇𝑠𝑔𝑠𝑘 − 𝑠𝑔∇𝑠𝑘] ⋅ ∇𝜓d𝐱

= 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘𝜓) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝑠𝑔𝜓) − 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑠𝑔𝑠𝑘𝜓ds − 2𝑖𝜋 ∫

Σ
𝑔(𝑦)𝑘(𝑦)𝚛(𝑦)𝜓 (0, 𝑦)𝑑𝑦.

Applying the last proposition with 𝜓 = 1 yields immediately the following counterpart of
Green’s third formula.

Corollary 6.3.9. For each 𝑔, 𝑘 ∈ 𝐻 1
𝑝𝑒𝑟 (Σ),

𝑏(1)𝑠𝑖𝑛𝑔(𝑔, 𝑠𝑘) − 𝑏(1)𝑠𝑖𝑛𝑔(𝑘, 𝑠𝑔) = 2𝑖𝜋(𝑔, 𝑘)𝚛 + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑠𝑔𝑠𝑘ds. (6.39)

The third and last case consists in taking 𝑈 regular and 𝑉 singular, namely 𝑈 belonging to
a certain subspace of 𝐻 1

1/2(Ω𝑝,𝑛) and 𝑉 = 𝑠𝑘. Let us introduce 𝜓Σ(𝑥, 𝑦) = 𝜓(0, 𝑦) for (𝑥, 𝑦) ∈ Ω.
Notice that 𝜓Σ is actually a constant if 𝜕𝑦𝜓 = 0.

Proposition 6.3.10. Let 𝐮 ∈ 𝑄, 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟 (Σ) and ℓ ∈ 𝑄′, be such that

𝑏(1)𝑟𝑒𝑔 (𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝐯) = ℓ (𝐯) , ∀𝐯 ∈ 𝑄. (6.40)

Moreover, assume that we can define ℓ∞ as in (6.23). Let 𝑘 ∈ 𝐻 1
𝑝𝑒𝑟(Σ) and 𝜓 ∈ 𝒞 1

𝑝𝑒𝑟 ,𝑦 (Ω; ℝ) satisfying
𝜕𝑦𝜓 = 0. Then

∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝛼 [∇𝑢𝑗𝑠𝑘 − 𝑢𝑗∇𝑠𝑘] ⋅ ∇𝜓d𝐱

= ℓ∞ (𝑠𝑘𝜓) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘𝜓) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮𝜓) − 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗𝑠𝑘𝜓ds + 𝜓Σ⟨[𝐮], 𝑘⟩Σ, (6.41)

where the jump [𝐮] is defined in the statement of lemma 6.3.2 and ℓ∞(𝑠𝑘𝜓) as in (6.23).
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The proof of the previous proposition relies on the following technical lemma, most of the
proof of which is left to the reader.

Lemma 6.3.11. Let 𝐮 ∈ 𝑄, 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟(Σ), and 𝜓 ∈ 𝒞 1

𝑝𝑒𝑟 ,𝑦 (Ω; ℝ). Then, (𝜓 − 𝜓Σ) ∇𝑢𝑗 ∈ 𝐿2 (Ω𝑗), and
(𝜓 − 𝜓Σ) 𝜕𝑥𝑠𝑔 ∈ 𝐿2 (Ω). As a consequence, 𝑢 ∈ 𝐿2(Ω), s.t. 𝑢|Ω𝑝,𝑛

= 𝑢𝑝,𝑛, satisfies (𝜓 − 𝜓Σ) 𝑢 ∈ 𝐻 1(Ω).
Moreover, the trace 𝛾0 [(𝜓 − 𝜓Σ)𝑢] = (𝜓 − 𝜓Σ)𝑢|Σ vanishes.

Proof. Firstly, there is a neighborhood of Σ such that |𝜓 − 𝜓Σ| ≤ 𝐶|𝑥| ≤ 𝐶|𝛼|1/2. Consequently,
inside this neighborhood, |(𝜓 − 𝜓Σ) ∇𝑢𝑗| ≤ 𝐶|𝛼|1/2 |∇𝑢𝑗| and |(𝜓 − 𝜓Σ) 𝜕𝑥𝑠𝑔| ≤ 𝐶|𝑔| which prove the
first assertion. This also proves that (𝜓 − 𝜓Σ) 𝑢𝑗 ∈ 𝐻 1(Ω𝑗) since ∇ ((𝜓 − 𝜓Σ) 𝑢𝑗) = ∇ (𝜓 − 𝜓Σ) 𝑢𝑗 +
(𝜓 − 𝜓Σ) ∇𝑢𝑗, for 𝑗 ∈ {𝑝, 𝑛}.

Secondly, we prove the statement about the trace of ℎ𝑝 ∶= (𝜓 − 𝜓Σ)𝑢𝑝 ∈ 𝐻 1(Ω𝑝) only. With
the standard density argument, it suffices to prove the result for 𝑢𝑝 ∈ 𝐶∞(Ω𝑝). We start with the
expression

ℎ𝑝(0, 𝑦) = ℎ𝑝(𝑥, 𝑦) − ∫
𝑥

0
𝜕𝑠ℎ𝑝(𝑠, 𝑦)𝑑𝑠, (𝑥, 𝑦) ∈ Ω𝑝.

Applying the Cauchy-Schwarz inequality in ℝ2 and 𝐿2(Ω𝑝) yields

|ℎ𝑝(0, 𝑦)|2 ≤ 2|ℎ𝑝(𝑥, 𝑦)|2 + 2 |∫
𝑥

0
𝜕𝑠ℎ𝑝(𝑠, 𝑦)𝑑𝑠|

2

≤ 2|ℎ𝑝(𝑥, 𝑦)|2 + 2𝑥 ∫
𝑥

0
|𝜕𝑠ℎ𝑝(𝑠, 𝑦)|2ds.

Remark that a priori (𝑥, 𝑦) ↦ ℎ𝑝(𝑥, 𝑦)/𝑥 ∈ 𝐿2(Ω𝑝). Integrating both sides of the above inequality
in the strip Ω𝜀

𝑝 = {(𝑥, 𝑦) ∈ Ω𝑝 ∶ |𝑥| < 𝜀}, 𝜀 ∈ (0, 1), allows to obtain the following inequality,
where all terms in the right-hand side are finite:

∫
Σ
|ℎ𝑝(0, 𝑦)|2𝑑𝑦 ≤ 𝜀−1 (2∫

Ω𝜀
𝑝

|ℎ𝑝(𝑥, 𝑦)|2d𝐱 + 𝜀2‖∇ℎ𝑝‖2𝐿2(Ω𝜀
𝑝))

≤ 𝜀 (2 ‖
ℎ𝑝(𝑥, 𝑦)

𝑥
‖
2

𝐿2(Ω𝜀
𝑝)
+ ‖∇ℎ𝑝‖2𝐿2(Ω𝜀

𝑝)) .

The above is valid for all 𝜀 > 0, hence taking 𝜀 → 0 in the above shows that ‖𝛾0ℎ𝑝‖𝐿2(Σ) = 0.
Repeating the argument for ℎ𝑛 = (𝜓 − 𝜓Σ) 𝑢𝑛 leads to (𝜓 − 𝜓Σ) 𝑢 ∈ 𝐻 1(Ω) with 𝑢|Ω𝑝,𝑛

= 𝑢𝑝,𝑛.

Proof of proposition 6.3.10. We start by using (6.35), with 𝒪 = Ω𝑝,𝑛:

∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝛼 [∇𝑢𝑗𝑠𝑘 − 𝑢𝑗∇𝑠𝑘] ⋅ ∇𝜓d𝐱 = 𝐼1 − 𝐼2, with

𝐼1 = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝛼𝜕𝑥𝑢𝑗𝜕𝑥 (𝑠𝑘 (𝜓 − 𝜓Σ))d𝐱. and 𝐼2 = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝛼𝜕𝑥 (𝑢𝑗 (𝜓 − 𝜓Σ)) 𝜕𝑥𝑠𝑘d𝐱,

Remark that the above two integrals are well-defined by lemma 6.3.11. On one hand,

𝐼1 = 𝑏(1)𝑟𝑒𝑔 (𝐮, 𝑠𝑘(𝜓 − 𝜓Σ)) − ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

(𝛼𝜕𝑦𝑢𝑗𝜕𝑦 (𝑠𝑘 (𝜓 − 𝜓Σ)) − 𝜔2𝑢𝑗(𝑠𝑘 (𝜓 − 𝜓Σ))) d𝐱

− 𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗 (𝜓 − 𝜓Σ) 𝑠𝑘ds.
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On the other hand, integrating by parts in Ω𝑗, 𝑗 = 𝑝, 𝑛, and noting that, according to proposition
6.3.10, (𝜓 − 𝜓Σ) 𝑢 ∈ 𝐻 1(Ω) with vanishing trace on Σ, and 𝛼𝜕𝑛𝑠𝑘|Σ = 𝑘(𝑦) 𝚛(𝑦) yields

𝐼2 = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝑢𝑗 (𝜓 − 𝜓Σ) (−𝜕𝑥 (𝛼𝜕𝑥𝑠𝑘))d𝐱 + ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗 (𝜓 − 𝜓Σ) 𝛼𝜕𝑛𝑠𝑘ds

= 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮(𝜓 − 𝜓Σ)) − ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

(𝛼𝜕𝑦 (𝑢𝑗 (𝜓 − 𝜓Σ)) 𝜕𝑦𝑠𝑘 − 𝜔2 (𝑢𝑗 (𝜓 − 𝜓Σ)) 𝑠𝑘) d𝐱

+ 𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗 (𝜓 − 𝜓Σ) 𝑠𝑘ds.

Hence, using 𝜕𝑦𝜓 = 0,

∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

𝛼 [∇𝑢𝑗𝑠𝑘 − 𝑢𝑗∇𝑠𝑘] ⋅ ∇𝜓d𝐱 = 𝑏(1)𝑟𝑒𝑔 (𝐮, 𝑠𝑘(𝜓 − 𝜓Σ)) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮(𝜓 − 𝜓Σ))

− 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗𝑠𝑘 (𝜓 − 𝜓Σ) ds.

(6.42)

Comparing the above with the statement of the proposition, it remains to rewrite the term
𝑏(1)𝑟𝑒𝑔 (𝐮, 𝑠𝑘(𝜓 − 𝜓Σ)), using the identity (6.40) and the fact that 𝜓Σ is constant:

𝑏(1)𝑟𝑒𝑔 (𝐮, 𝑠𝑘(𝜓 − 𝜓Σ)) = ℓ (𝑠𝑘(𝜓 − 𝜓Σ)) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘(𝜓 − 𝜓Σ))

= ℓ∞ (𝑠𝑘𝜓) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘𝜓) − 𝜓Σ (ℓ∞ (𝑠𝑘) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘)) , (6.43)

where ℓ∞ (𝑠𝑘𝜓) and ℓ∞ (𝑠𝑘) are well-defined because supp ℓ ∩ Σ = ∅. Notice that 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘𝜓) and

𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘) are also well-defined since 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝐯) is well-defined as soon as 𝐯 ∈ 𝐿2 (Ω), 𝜕𝑦𝐯 ∈ 𝐿2 (Ω)
and the trace of 𝐮 on Γ𝑗 belongs to 𝐿2(Γ𝑗) for 𝑗 = 𝑝, 𝑛. Recall that the jump [𝐮] satisfies (6.26),
namely

ℓ∞ (𝑠𝑘) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮) = 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗𝑠𝑘ds − ⟨[𝐮], 𝑘⟩Σ.

Combining (6.42), (6.43) and the above identity results in the desired expression.

Remark 6.3.12. Let 𝜑 be as in definition 4.2.2. With this particular regular function, the previous
propositions are respectively summarized as, with 𝐮, 𝐯, 𝑔 and 𝑘 satisfying the assumptions of the
corresponding propositions,

(prop. 6.3.6) 𝐶𝜑 (𝐮, 𝐯) = 𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯𝜑) − 𝑏(1)𝑟𝑒𝑔(𝐯, 𝐮𝜑), (6.44)

(prop. 6.3.8) 𝐶𝜑 (𝑠𝑔, 𝑠𝑘) = 𝑏(1)𝑠𝑖𝑛𝑔(𝑔, 𝑠𝑘𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔(𝑘, 𝑠𝑔𝜑) − 2𝑖𝜋(𝑔, 𝑘)𝚛, (6.45)

(identity 6.42) 𝐶𝜑 (𝐮, 𝑠𝑘) = 𝑏(1)𝑟𝑒𝑔 (𝐮, 𝑠𝑘 (𝜑 − 1)) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮 (𝜑 − 1)) + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗𝑠𝑘ds (6.46)

(prop. 6.3.10) = ℓ∞ (𝑠𝑘𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮𝜑) + ⟨[𝐮], 𝑘⟩Σ. (6.47)

6.3.4 Expressions of 𝑎(1)

Since we obtained a mixed formulation in section 6.2.2, it is important to study 𝑎(1) on the kernel
of 𝙱(1) ∶ 𝑉 (1) → 𝑄′, the operator associated to 𝑏(1)𝑟𝑒𝑔:

Ker 𝙱(1) ≔ {(𝐮, 𝑔, ℎ) ∈ 𝑉 (1) ∶ 𝑏(1) ((𝐮, 𝑔, ℎ) , 𝐯) = 𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔(𝑔, 𝐯) = 0 ∀𝐯 ∈ 𝑄} .
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6.3. Jump and technical results

For the convenience of the reader, we recall the expression (6.20) of the form 𝑎(1):

𝑎(1) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) = 𝑏(1)𝑠𝑖𝑛𝑔 (ℎ, (𝐯 + 𝑠𝑘−𝑙)𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑙, (𝐮 + 𝑠𝑔−ℎ)𝜑) + 𝐶𝜑 (𝐮 + 𝑠𝑔−ℎ, 𝐯 + 𝑠𝑘−𝑙) .

From now on, we assume that 𝜑 ∈ 𝒞 1
𝑝𝑒𝑟 ,𝑦 (Ω; ℝ), supp 𝜑∩Γ𝑛,𝑝 = ∅, 𝜕𝑦𝜑 = 0 and 𝜑|Σ = 1, as in remark

6.2.12, so that 𝜑 satisfies the assumptions of proposition 6.3.10. The following technical lemma
allows to reexpress the form 𝑎(1) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) for (𝐮, 𝑔) satisfying a variational equation like
(6.11), ℎ ∈ 𝐻 1

𝑝𝑒𝑟(Σ) and (𝐯, 𝑘, 𝑙) ∈ 𝑉 (1).

Lemma 6.3.13. Let 𝐮 ∈ 𝑄, 𝑔 ∈ 𝐻 1
𝑝𝑒𝑟 (Σ) and ℓ ∈ 𝑄′, be such that

𝑏(1)𝑟𝑒𝑔 (𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝐯) = ℓ (𝐯) , ∀𝐯 ∈ 𝑄, (6.48)

and ℓ∞ exists as in lemma 6.3.2. for all (𝐯, 𝑘, 𝑙) ∈ 𝑉 (1), it holds

𝑎(1) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) + 𝑏(1) ((𝐯, 𝑘, 𝑙) , 𝐮𝜑) = ℓ (𝐯𝜑) + ℓ∞ (𝑠𝑘−𝑙𝜑)

+ 𝑏(1) ((𝐯, 𝑘, 𝑙) , 𝑠𝑔−ℎ (1 − 𝜑))

− 2𝑖𝜋 (𝑔 − ℎ, 𝑘 − 𝑙)𝐿2𝚛(Σ) + ⟨[𝐮], 𝑘 − 𝑙⟩Σ

− 𝑏(1)𝑠𝑖𝑛𝑔(𝑔 − ℎ, 𝐯) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝑠𝑔−ℎ) + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑠𝑔−ℎ𝑣𝑗ds.

(6.49)
Moreover, assume that 𝐯 has a jump as in lemma 6.3.2, i.e., there is ℓ̃ ∈ 𝑄′ such that 𝑏(1)𝑟𝑒𝑔 (𝐯, 𝛍) +
𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝛍) = ℓ̃ (𝛍) for all 𝑘 ∈ 𝐻 1

𝑝𝑒𝑟(Σ),𝛍 ∈ 𝑄, and ℓ̃∞ has a sense. Then, we have for all 𝑘, 𝑙 ∈ 𝐻 1
𝑝𝑒𝑟(Σ)

𝑎(1) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) = (ℓ (𝐯𝜑) + ℓ∞ (𝑠𝑘−𝑙𝜑)) − (ℓ̃ (𝐮𝜑) + ℓ̃∞ (𝑠𝑔−ℎ𝜑))

+ ⟨[𝐮], 𝑘 − 𝑙⟩Σ − ⟨[𝐯], 𝑔 − ℎ⟩Σ
− 2𝑖𝜋 (𝑔 − ℎ, 𝑘 − 𝑙)𝐿2𝚛(Σ) .

(6.50)

In particular, if (𝐯, 𝑘, 𝑙) ∈ Ker 𝙱(1), i.e., ℓ̃ = 0, then

𝑎(1) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) = ℓ (𝐯𝜑) + ℓ∞ (𝑠𝑘−𝑙𝜑) + ⟨[𝐮], 𝑘 − 𝑙⟩Σ − ⟨[𝐯], 𝑔 − ℎ⟩Σ − 2𝑖𝜋 (𝑔 − ℎ, 𝑘 − 𝑙)𝐿2𝚛(Σ) .
(6.51)

Proof. We start by developing the first term in the definition of 𝑎(1) given by (6.20). Our goal
is to rewrite it in terms of the forms 𝑏(1), 𝑏(1)𝑠𝑖𝑛𝑔 and 𝑏(1)𝑠𝑖𝑛𝑔, and then rearrange the terms as in the
proposition. Using (6.44), (6.45), (6.46) and (6.47) gives

𝐶𝜑 (𝐮 + 𝑠𝑔−ℎ, 𝐯 + 𝑠𝑘−𝑙)

= 𝐶𝜑 (𝐮, 𝐯) + 𝐶𝜑 (𝐮, 𝑠𝑘−𝑙) + 𝐶𝜑 (𝑠𝑔−ℎ, 𝐯) + 𝐶𝜑 (𝑠𝑔−ℎ, 𝑠𝑘−𝑙)

= 𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯𝜑) − 𝑏(1)𝑟𝑒𝑔(𝐯, 𝐮𝜑) (6.44)

+ ℓ∞ (𝑠𝑘−𝑙𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘−𝑙𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘 − 𝑙, 𝐮𝜑) + ⟨[𝐮]Σ, 𝑘 − 𝑙⟩Σ (6.47)

+ 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔 − ℎ, 𝐯 (𝜑 − 1)) − 𝑏(1)𝑟𝑒𝑔 (𝐯, 𝑠𝑔−ℎ (𝜑 − 1)) + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑠𝑔−ℎ𝑣𝑗ds (6.46)

+ 𝑏(1)𝑠𝑖𝑛𝑔(𝑔 − ℎ, 𝑠𝑘−𝑙𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔(𝑘 − 𝑙, 𝑠𝑔−ℎ𝜑) − 2𝑖𝜋 (𝑔 − ℎ, 𝑘 − 𝑙)𝚛 . (6.45)
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Chapter 6. Mixed variational formulation

Remark that in the above the term ℓ∞(𝑠𝑘−𝑙𝜑) is well-defined. Rearranging the terms in the above
yields

𝐶𝜑 (𝐮 + 𝑠𝑔−ℎ, 𝐯 + 𝑠𝑘−𝑙) = ℓ∞ (𝑠𝑘−𝑙𝜑) + [𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯𝜑) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝐯𝜑)] − [𝑏(1)𝑟𝑒𝑔(𝐯, 𝐮𝜑) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮𝜑)]

− [𝑏(1)𝑟𝑒𝑔 (𝐯, 𝑠𝑔−ℎ (𝜑 − 1)) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝑠𝑔−ℎ (𝜑 − 1))]

− 2𝑖𝜋 (𝑔 − ℎ, 𝑘 − 𝑙)𝚛 + ⟨[𝐮]Σ, 𝑘 − 𝑙⟩Σ

− 𝑏(1)𝑠𝑖𝑛𝑔(𝑔 − ℎ, 𝐯) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝑠𝑔−ℎ) + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑠𝑔−ℎ𝑣𝑗ds

+ 𝑏(1)𝑠𝑖𝑛𝑔(𝑙, (𝐮 + 𝑠𝑔−ℎ) 𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔 (ℎ, (𝐯 + 𝑠𝑘−𝑙) 𝜑)

Using the definition (6.21) of the form 𝑏(1), namely 𝑏(1) = 𝑏(1)𝑟𝑒𝑔 + 𝑏(1)𝑠𝑖𝑛𝑔, and the assumptions of the
lemma on (𝐯, 𝑘, 𝑙) and (𝐮, 𝑔, ℎ) we rewrite the above as follows:

𝐶𝜑 (𝐮 + 𝑠𝑔−ℎ, 𝐯 + 𝑠𝑘−𝑙) = ℓ (𝐯𝜑) + ℓ∞ (𝑠𝑘−𝑙𝜑) − 𝑏(1) ((𝐯, 𝑘, 𝑙) , 𝐮𝜑)

− 𝑏(1) ((𝐯, 𝑘, 𝑙) , 𝑠𝑔−ℎ (𝜑 − 1))

− 2𝑖𝜋 (𝑔 − ℎ, 𝑘 − 𝑙)𝚛 + ⟨[𝐮]Σ, 𝑘 − 𝑙⟩Σ

− 𝑏(1)𝑠𝑖𝑛𝑔(𝑔 − ℎ, 𝐯) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝑠𝑔−ℎ) + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑠𝑔−ℎ𝑣𝑗ds

+ 𝑏(1)𝑠𝑖𝑛𝑔(𝑙, (𝐮 + 𝑠𝑔−ℎ) 𝜑) − 𝑏(1)𝑠𝑖𝑛𝑔 (ℎ, (𝐯 + 𝑠𝑘−𝑙) 𝜑)

(6.52)

Plugging in the resulting expression into the definition (6.20) of 𝑎(1) yields the first expression in
the statement of the lemma:

𝑎(1) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) + 𝑏(1) ((𝐯, 𝑘, 𝑙) , 𝐮𝜑) = ℓ (𝐯𝜑) + ℓ∞ (𝑠𝑘−𝑙𝜑) + 𝑏(1) ((𝐯, 𝑘, 𝑙) , 𝑠𝑔−ℎ (1 − 𝜑))

− 2𝑖𝜋 (𝑔 − ℎ, 𝑘 − 𝑙)𝐿2𝚛(Σ) + ⟨[𝐮], 𝑘 − 𝑙⟩Σ

− 𝑏(1)𝑠𝑖𝑛𝑔(𝑔 − ℎ, 𝐯) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝑠𝑔−ℎ) + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑠𝑔−ℎ𝑣𝑗ds.

To obtain the second identity, given (𝐯, 𝑘, 𝑙) ∈ Ker 𝑉 (1) such that the jump [𝐯]Σ is well-defined, it
verifies identity (6.26) with ℓ∞ = ℓ̃∞:

⟨[𝐯]Σ, 𝑔 − ℎ⟩Σ = 𝑏(1)𝑠𝑖𝑛𝑔(𝑔 − ℎ, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝑠𝑔−ℎ) + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑣𝑗𝑠𝑔−ℎds − ℓ̃∞ (𝑠𝑔−ℎ) .

Therefore, replacing the last terms of the first identity of the proposition gives precisely the
second one. Finally, given (𝐯, 𝑘, 𝑙) ∈ Ker 𝙱(1), the third identity is obtained naturally from the
second since ℓ̃∞ = 0.

The results that follow lead to an alternative expression to 𝑎(1) on Ker 𝙱(1) × Ker 𝙱(1).

Lemma 6.3.14. Let (𝐮, 𝑔, ℎ) , (𝐯, 𝑘, 𝑙) ∈ Ker 𝙱(1). Then we have the following identity:

⟨[𝐮]Σ, 𝑘⟩Σ − ⟨[𝐯]Σ, 𝑔⟩Σ = 2𝑖𝜋 (𝑔, 𝑘)𝚛 +2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
(𝑢𝑗 + 𝑠𝑔) (𝑣𝑗 + 𝑠𝑘)ds. (6.53)
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6.4. Well-posedness of the mixed problem

Proof. Let 𝐽 ∶= ⟨[𝐮], 𝑘⟩Σ − ⟨[𝐯], 𝑔⟩Σ. According to the jump formula (6.26), we have

𝐽 = 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘) + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗𝑠𝑘𝑑𝑠 − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝐯) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝑠𝑔) + 2𝑖𝜆 ∑

𝑗∈{𝑝,𝑛}
∫
Γ𝑗
𝑠𝑔𝑣𝑗𝑑𝑠.

Making use of the fact that 𝑏(1)((𝐮, 𝑔, ℎ), 𝐯) = 0, 𝑏(1)((𝐯, 𝑘, 𝑙), 𝐮) = 0 and using the definition (6.21)
of 𝑏(1) yields

𝐽 = 𝑏(1)𝑟𝑒𝑔 (𝐮, 𝐯) − 𝑏(1)𝑟𝑒𝑔 (𝐯, 𝐮)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐽1

+ 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘) − 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝑠𝑔)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐽2

+2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
(𝑢𝑗𝑠𝑘 + 𝑠𝑔𝑣𝑗) 𝑑𝑠.

From the definition (6.4) of 𝑏(1)𝑟𝑒𝑔, it follows that 𝐽1 = 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫Γ𝑗 𝑢𝑗𝑣𝑗𝑑𝑠. Applying (6.39) to refor-

mulate 𝐽2, we readily arrive at (6.53).

The above lemma yields immediately the following property.

Corollary 6.3.15. Let (𝐮, 𝑔, ℎ) ∈ Ker 𝙱(1) with 𝑔 ≠ 0. Then Im ⟨[𝐮]Σ, 𝑔⟩Σ > 0.

Proof. It is a direct application of previous proposition with 𝐯 = 𝐮 and 𝑘 = 𝑔, so that

Im ⟨[𝐮]Σ, 𝑔⟩Σ = 𝜋 ‖𝑔‖2𝐿2𝚛(Σ) + 𝜆 ∑
𝑗∈{𝑝,𝑛}

‖𝐮 + 𝑠𝑔‖
2
𝐿2(Γ𝑗)

.

Finally, lemmas 6.3.13, 6.3.14 allow us to prove the following result, the second part of which
is proposition 23 from [49].

Corollary 6.3.16. Let (𝐮, 𝑔, ℎ) , (𝐯, 𝑘, 𝑙) ∈ Ker 𝙱(1). Then

𝑎(1) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) = 2𝑖𝜋 (𝑔, 𝑘)𝚛 − 2𝑖𝜋(𝑔 − ℎ, 𝑘 − 𝑙)𝚛 + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
(𝐮 + 𝑠𝑔)(𝐯 + 𝑠𝑘)ds.

In particular, it holds that

𝑎(1) ((𝐮, 𝑔, 0), (𝐮, 𝑔, 0)) = 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

‖𝑢𝑗 + 𝑠𝑔‖
2
𝐿2(Γ𝑗)

, and 𝑎(1) ((𝟎, 0, ℎ), (𝟎, 0, ℎ)) = −2𝑖𝜋 ‖ℎ‖2𝐿2𝚛(Σ) .

(6.54)

6.4 Well-posedness of the mixed problem

We now study the mixed problem (6.22) in more details. Namely, we are interested in the
uniqueness and existence of its solution. First, we study a stabilized version of the mixed problem
(6.22) Next, we prove its uniqueness. Finally, we address the solution provided by assumption
6.1.1.
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Chapter 6. Mixed variational formulation

6.4.1 Stabilized problem

The study of 𝑎(1) on Ker 𝙱(1), in particular lemma 6.3.16 shows a lack of control in the norm
‖⋅‖𝐻 1(Σ):

Im 𝑎(1) ((𝐮, 𝑔, ℎ) , (𝐮, 𝑔, −ℎ)) = 2𝜋‖ℎ‖2𝐿2𝚛(Σ) + 2𝜆 ∑
𝑗∈{𝑝,𝑛}

‖𝑢𝑗 + 𝑠𝑔‖
2
𝐿2(Γ𝑗)

. (6.55)

Therefore, let the stabilized counterpart of (6.22) be:

|
|
|
|
|
|

Find ((𝐮, 𝑔, ℎ) , 𝛌) ∈ 𝑉 (1) × 𝑄 such that

𝑎(1)𝜌 ((𝐮, 𝑔, ℎ) , (𝐯, 𝑘, 𝑙)) + 𝑏(1) ((𝐯, 𝑘, 𝑙), 𝛌) = ℓ(1)(𝐯𝜑) + ℓ(1)∞ (𝑠𝑘−𝑙𝜑), ∀ (𝐯, 𝑘, 𝑙) ∈ 𝑉 ,

𝑏(1) ((𝐮, 𝑔, ℎ), 𝛍) = ℓ(1)(𝛍), ∀𝛍 ∈ 𝑄

(6.56)

where

𝑎(1)𝜌 ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) = 𝑎(1) ((𝐮, 𝑔, ℎ), (𝐯, 𝑘, 𝑙)) − 𝑖𝜌 ((𝑔, 𝑘)𝐻 1(Σ) − (ℎ, 𝑙)𝐻 1(Σ)) , with 𝜌 > 0.

The stabilization terms involve the 𝐻 1
𝑝𝑒𝑟(Σ) inner product, which corresponds to the fact that 𝑔

must belong to 𝐻 1
𝑝𝑒𝑟(Σ). So one cannot choose an 𝐻 𝑠

𝑝𝑒𝑟(Σ) inner product for 𝑠 < 1.
Retracing the steps of [49], we can prove the well-posedness result below regarding the

stabilized variational formulation. We use a classical approach to the well-posedness of the mixed
formulations. According to the Babuška-Brezzi theory, it is sufficient to prove a surjectivity
property of the operator 𝙱(1) ∶ 𝑉 (1) ↦ 𝑄′ associated to the form 𝑏(1) and an inf-sup condition
for the form 𝑎(1)𝜌 on the kernel of 𝙱(1). The kernel of the operator 𝙱(1) is characterized as

Ker 𝙱(1) = {(𝐮, 𝑔, ℎ) ∈ 𝑉 (1) ∶ 𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔(𝑔, 𝐯) = 0 ∀𝐯 ∈ 𝑄}.

We observe that, since the third variable ℎ does not appear in the characterization of the kernel,
it can take any value. We use this property on several occasions throughout the manuscript.
Introduce the following problem: given ℓ ∈ 𝑄′,

|
Find 𝐯 ∈ 𝑄 s. t.

𝑏(1)𝑟𝑒𝑔 (𝐯, 𝛍) = ℓ(𝜇), ∀𝛍 ∈ 𝑄.

The problem is well-posed, see [49, proposition 4]. As a straightforward consequence, one finds
that the operator 𝙱(1) is onto 𝑄′. We can now state the well-posedness result of the stabilized
variational formulation.

Theorem 6.4.1. Let 𝜌 > 0. For all 𝑓 ∈ 𝐿2(Γ𝑝 ∪ Γ𝑛), the stabilized mixed formulation (6.56) admits
a unique solution.

Proof. One needs to verify an inf-sup condition for the form 𝑎(1)𝜌 on the kernel of 𝙱(1). The proof
mimics the one in [49], and is based on identities (6.54) for (𝐮, 𝑔, ℎ) ∈ Ker 𝙱(1). Recall that 𝑎(1) is
anti-hermitian, due to its structure (6.20). Regarding the inf-sup condition, we note that for all
(𝐮, 𝑔, ℎ) ∈ Ker 𝙱(1),

Im 𝑎(1)𝜌 ((𝐮, 𝑔, ℎ), (𝐮, 𝑔, −ℎ)) = 2𝜋‖ℎ‖2𝐿2𝚛(Σ) + 2𝜆 ∑
𝑗∈{𝑝,𝑛}

‖𝑢𝑗 + 𝑠𝑔‖
2
𝐿2(Γ𝑗)

+ 𝜌‖𝑔‖2𝐻 1(Σ) + 𝜌‖ℎ‖2𝐻 1(Σ)

≥ 𝐶̃ (‖𝐮‖2𝑄 + ‖𝑔‖2𝐻 1(Σ) + ‖ℎ‖2𝐻 1(Σ)) ,

116



6.4. Well-posedness of the mixed problem

since the norm of 𝐮 is controlled by the norm of 𝑔. In the statement of [49, proposition 13], with
𝑓 = 0, one shows that ‖𝐮‖𝑄 ≤ ‖𝑏(2)𝑠𝑖𝑛𝑔 (𝑔, ⋅)‖𝑄′ ≲ ‖𝑔‖𝐻 2(Σ), while in our case the same argument yields

a stability bound ‖𝐮‖𝑄 ≲ ‖𝑏(1)𝑠𝑖𝑛𝑔(𝑔, ⋅)‖𝑄′ ≲ ‖𝑔‖𝐻 1(Σ).

6.4.2 Uniqueness of the solution

The goal of this section is to prove the following result, which shows that the mixed variational
formulation (6.22) is injective. Let 𝙰(1) ∶ 𝑉 (1) → (𝑉 (1))

′
be the operator associated to 𝑎(1).

Proposition 6.4.2. Ker 𝙱(1) ∩ Ker 𝙰(1) = {(𝟎, 0, 0)}.

Remark 6.4.3. Let us remark that the injectivity of the non-stabilized mixed formulation does not
follow from the identities (6.54) previously obtained in the article [49], which later on served to
construct the stabilized mixed formulation. Indeed, applying these identities allows to conclude
that ℎ = 0, and (𝑢𝑗 + 𝑠𝑔)|Γ𝑗

= 0; the latter, however, does not imply that 𝐮 = 0 and 𝑔 = 0.

As a matter of fact, given a solution (𝐮, 𝑔, ℎ) ∈ 𝑉 (1) of the mixed variational formulation (6.22),
the conditions of lemma 6.3.2 are obviously satisfied with 𝑔 and ℓ = ℓ(1), and consequently the
jump [𝐮]Σ is well-defined. Therefore, we can reexpress 𝑎(1) using the jump [𝐮]Σ.

Remark 6.4.4. In the context of lemma 6.3.13 and in the light of remark 6.2.10, one can rewrite the
minimization functional 𝒥 + (𝐮, 𝑔, ℎ) on the kernel of 𝙱(1) with the help of the jump [𝐮]Σ:

𝒥 + (𝐮, 𝑔, ℎ) = 𝜋 ‖𝑔 − ℎ‖2𝐿2𝚛(Σ) − Im [⟨[𝐮]Σ, 𝑔 − ℎ⟩Σ] , ∀(𝐮, 𝑔, ℎ) ∈ Ker 𝙱(1).

Proof of proposition 6.4.2. Let (𝐮, 𝑔, ℎ) ∈ Ker 𝙱(1) ∩ Ker 𝙰(1). Using the identities (6.54), it yields

Im 𝑎(1) ((𝐮, 𝑔, ℎ) , (𝐮, 𝑔, −ℎ)) = 2𝜋‖ℎ‖2𝐿2𝚛(Σ) + 2𝜆 ∑
𝑗∈{𝑝,𝑛}

‖𝑢𝑗 + 𝑠𝑔‖
2
𝐿2(Γ𝑗)

= 0,

so that ℎ = 0. Next, since (𝟎, 0, 𝑔) , (𝐮, 𝑔, 0) ∈ Ker 𝙱(1), from (6.51) it follows that

𝑎(1)((𝐮, 𝑔, 0), (0, 0, 𝑔)) = 2𝑖𝜋 ‖𝑔‖2𝐿2𝚛(Σ) − ⟨[𝐮]Σ, 𝑔⟩Σ,

𝑎(1)((𝐮, 𝑔, 0), (𝐮, 𝑔, 0)) = −2𝑖𝜋 ‖𝑔‖2𝐿2𝚛(Σ) + 2𝑖 Im ⟨[𝐮]Σ, 𝑔⟩Σ.

Combining the two identities above yields

Im 𝑎(1) ((𝐮, 𝑔, 0) , (𝐮, 𝑔, 2𝑔)) = 2𝜋 ‖𝑔‖2𝐿2𝚛(Σ) .

Because (𝐮, 𝑔, 0) ∈ Ker 𝙰(1), the above implies that 𝑔 = 0. Finally, (𝐮, 0, 0) ∈ Ker 𝙱(1) implies that
𝑏(1)𝑟𝑒𝑔 (𝐮, 𝐯) = 0 for all 𝐯 ∈ 𝑄. Together with proposition 4 of [49] about the well-posedness of the
problem (6.4.1), this implies that 𝐮 = 0.

Theorem 6.4.5. The solution to (6.22), if it exists, is unique.

Proof. By linearity, it is sufficient that to check that if (𝐮, 𝑔, ℎ, 𝛌) is a solution of (6.22) with ℓ(1),
then (𝐮, 𝑔, ℎ, 𝛌) = (𝟎, 0, 0, 𝟎). By proposition 6.4.2, 𝐮 = 0 and 𝑔 = ℎ = 0. Finally, we have for all
(𝐯, 𝑘, 𝑙) ∈ 𝑉 (1)

0 = 𝑏(1)𝑟𝑒𝑔 ((𝐯, 𝑘, 𝑙) , 𝛌) = ⟨𝙱(1)
†
𝛌, (𝐯, 𝑘, 𝑙)⟩

𝑉 (1)′,𝑉 (1)
= ⟨𝙱(1) (𝐯, 𝑘, 𝑙) , 𝛌⟩𝑄′,𝑄.

We conclude that 𝛌 = 0 because 𝙱(1) is onto 𝑄′.
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Chapter 6. Mixed variational formulation

6.4.3 Existence of the solution

Proposition 6.4.2 shows that the mixed formulation (6.22) has at most one solution. Therefore,
if we construct a solution to this formulation, it will be unique. It is thus reasonable to look for
(𝐮, 𝑔) as the limiting absorption solution of the original formulation (6.1), as 𝜈 → 0+. From the
content of section 6.2.2, we should expect that ℎ = 𝑔. Moreover, again, by explicit computations,
in this case one can show that the Lagrange multiplier 𝛌 = 𝐮𝜑, see lemma 6.3.13.

However, the above said is not straightforward when comparing the section 6.2.2 and the
remark 6.4.4, because of the presence of the extra term involving the jump [𝐮]Σ in the functional
𝒥 +, which did not seem to occur in the original functional 𝒥 𝜈. This term becomes more apparent
in the following proposition.

Proposition 6.4.6. Let (𝐮, 𝑔) ∈ 𝑄 × 𝐻 1
𝑝𝑒𝑟(Σ) be such that 𝑏(1)𝑟𝑒𝑔 (𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝐯) = ℓ(1) (𝐯) for all

𝐯 ∈ 𝑄. Then, for all (𝐯, 𝑘, 𝑙) ∈ 𝑉 (1),

𝑎(1) ((𝐮, 𝑔, 𝑔) , (𝐯, 𝑘, 𝑙)) + 𝑏(1) ((𝐯, 𝑘, 𝑙) , 𝐮𝜑) = ℓ(1) ((𝐯 + 𝑠𝑘−𝑙) 𝜑) + ⟨[𝐮]Σ, 𝑘 − 𝑙⟩Σ. (6.57)

As a consequence, if ((𝐮, 𝑔, 𝑔) , 𝐮𝜑) is the solution of (6.22) then [𝐮]Σ = 0. Conversely, if ((𝐮, 𝑔, ℎ) , 𝛌)
is the solution of (6.22) and [𝐮]Σ = 0, then 𝑔 = ℎ and 𝛌 = 𝐮𝜑.

Proof. Apply (6.49) to (𝐮, 𝑔, 𝑔) yields the identity of the proposition. Then, if ((𝐮, 𝑔, 𝑔) , 𝐮𝜑) is the
solution of (6.22), we have ⟨[𝐮]Σ, 𝑘 − 𝑙⟩Σ = 0 for all 𝑘, 𝑙 ∈ 𝐻 1

𝑝𝑒𝑟(Σ), i.e., [𝐮]Σ = 0. Conversely, if
((𝐮, 𝑔, ℎ) , 𝛌) is the solution of (6.22) and [𝐮]Σ = 0, then ((𝐮, 𝑔, 𝑔) , 𝐮𝜑) is also a solution, so that
𝑔 = ℎ and 𝛌 = 𝐮𝜑 by uniqueness of the solution, see theorem 6.4.5.

Notice that the above proposition does not ensure the existence of a solution to (6.22), nor that
(𝐮, 𝑔, 𝑔) is the solution, since it may happen that the solution of the mixed variational formulation
satisfies [𝐮]Σ ≠ 0.

Nonetheless, the above shows that the question of the consistency of the mixed variational
formulation (6.22) with the original limiting absorption problem (6.1) reduces to the question of
the jump of the regular part [𝐮]Σ, where we seek (𝐮, 𝑔) to be the limiting absorption solution.

Theorem 6.4.7. Let (𝐮+, 𝑔+) be like in assumption 6.1.1. Then (𝐮+, 𝑔+, 𝑔+, 𝐮+𝜑) is the unique
solution of (6.22).

Proof. It suffices to verify that the limiting absorption solution (𝐮+, 𝑔+) as defined in assumption
6.1.1 satisfies the assumptions of proposition 6.4.6, with [𝐮+]Σ = 0. This follows from lemma 6.2.1
and proposition 6.3.5. Finally, this is the unique solution by theorem 6.4.5.

Remark 6.4.8. The mixed formulation takes its origin in the minimization of a functional lim
𝜈→0+

𝒥 𝜈.

The minimum of this functional is achieved in particular when ℎ = 𝑔+, and thus it is unsurprising
that the Lagrange multiplier ℎ is chosen as 𝑔+ in the above. As for an explicit form of 𝝀 = 𝐮+𝜑, it
follows from the computations, see also [49, section 5.2] and proposition 6.4.6.
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6.4.4 Discussion on the stability of the solution

Since Theorem 6.4.7 ensures the existence of a unique solution of themixed variational formulation
(6.22), the last question to be addressed concerns the stability of this solution with respect to the
data 𝑓Ω ∈ 𝐿2(Ω) and 𝑓Γ ∈ 𝐿2(Γ𝑝 ∪ Γ𝑛).

Before proceeding, let us recall the following proposition. It is a consequence of [4, Theorem
1], which uses mainly pseudo-differential operators.

Proposition 6.4.9. Let 𝑓Ω ∈ 𝐿2(Ω), 𝑓Γ ∈ 𝐿2(Γ𝑝 ∪ Γ𝑛) and 𝐮 ∈ 𝑄 be the unique solution of

|
Find 𝐮 ∈ 𝑄 s.t.

𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯) = ℓ(1)(𝐯), for all 𝐯 ∈ 𝑄.
(6.58)

Then, 𝜕𝑦 (𝛼𝜕𝑦𝐮) ∈ 𝐿2(Ω) and there is a constant 𝐶 > 0 such that ‖𝜕𝑦 (𝛼𝜕𝑦𝐮)‖𝐿2(Ω) ≤ 𝐶 ‖𝑓‖𝐿2(Γ𝑝∪Γ𝑛).

Let us state the main result of this section.

Proposition 6.4.10. Let (𝐮, 𝑔, ℎ) ∈ 𝑉 (1) be the solution of (6.22). There exist 𝐶 > 0 independent of
(𝐮, 𝑔, ℎ), 𝑓Ω ∈ 𝐿2(Ω) and 𝑓Γ ∈ 𝐿2(Γ𝑝 ∪ Γ𝑛) be such that

‖ℎ‖2𝐿2𝚛(Σ) ≤ 𝐶 (‖𝑓Ω‖𝐿2(Ω) + ‖𝑓Γ‖𝐿2(Γ𝑝∪Γ𝑛)) (‖𝑔‖𝐿2𝚛(Σ) + ‖ℎ‖𝐿2𝚛(Σ)) .

The inequality above derive usually from the coercivity of the problem. However, in the
case of our mixed problem, the norm associated with the space 𝑉 (1) does not appear in the
inequality (6.55), and the proposition is not obvious. Then, a natural corollary of the proposition
above is the following.

Corollary 6.4.11. Let (𝐮+, 𝑔+) ∈ 𝑄 × 𝐻 1
𝑝𝑒𝑟(Σ) be as in theorem 6.4.7. There is 𝐶 > 0 independent of

(𝐮+, 𝑔+), 𝑓Ω ∈ 𝐿2(Ω) and 𝑓Γ ∈ 𝐿2(Γ𝑝 ∪ Γ𝑛) be such that

‖𝑔+‖𝐿2𝚛(Σ) ≤ 𝐶 (‖𝑓Ω‖𝐿2(Ω) + ‖𝑓Γ‖𝐿2(Γ𝑝∪Γ𝑛)) .

The proof of the proposition 6.4.10 relies on the following lemma.

Lemma 6.4.12. Let 𝐮 ∈ 𝑄 be such that 𝑏(1)𝑟𝑒𝑔(𝐮, 𝐯) = ℓ(1)(𝐯). Then, there exist a constant 𝐶 > 0 such
that for all 𝑘 ∈ 𝐻 1

𝑝𝑒𝑟(Σ)

|⟨[𝐮]Σ, 𝑘⟩Σ| ≤ 𝐶 (‖𝑓Ω‖𝐿2(Ω) + ‖𝑓Γ‖𝐿2(Γ𝑝∪Γ𝑛)) ‖𝑘‖𝐿2𝚛(Σ) .

Proof. The expression of the jump (6.26) gives here:

⟨[𝐮]Σ, 𝑘⟩Σ = 𝑏(1)𝑠𝑖𝑛𝑔(𝑘, 𝐮) + 2𝑖𝜆 ∑
𝑗∈{𝑝,𝑛}

∫
Γ𝑗
𝑢𝑗𝑠𝑘ds − ℓ(1) (𝑠𝑘) .

Since 𝜕𝑦 (𝛼𝜕𝑦𝐮) ∈ 𝐿2(Ω) by Proposition 6.4.9, integrating by parts 𝑏(1)𝑠𝑖𝑛𝑔(𝑘, 𝐮) in the 𝑦-direction
yields:

𝑏(1)𝑠𝑖𝑛𝑔(𝑘, 𝐮) = ∑
𝑗∈{𝑝,𝑛}

∫
Ω𝑗

[(−𝜕𝑦 (𝛼𝜕𝑦𝑢𝑗)) 𝑠𝑘 + 𝑢𝑗 (−𝜕𝑥 (𝛼𝜕𝑥𝑠𝑘) − 𝜔2𝑠𝑘)] d𝐱 + ∫
Γ𝑗
𝑢𝑗(𝛼𝜕𝑛𝑠𝑘 + 𝑖𝜆𝑠𝑘)ds.

The inequality of the lemma then follows easily.
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Proof of proposition 6.4.10. Let 𝐮ℓ ∈ 𝑄 be such that 𝑏(1)𝑟𝑒𝑔 (𝐮ℓ, 𝐯) = ℓ(1) (𝐯) for all 𝐯 ∈ 𝑄 (see [49,
Proposition 4]). Then, consider 𝐮0 = 𝐮 − 𝐮ℓ. We have (𝐮0, 𝑔, −ℎ) ∈ Ker 𝙱(1). Therefore, using
identity (6.55) yields

2𝜋 ‖ℎ‖2𝐿2𝚛(Σ) ≤ |𝑎(1) ((𝐮0, 𝑔, ℎ) , (𝐮0, 𝑔, −ℎ))|

= |ℓ(1) ((𝐮0 + 𝑠𝑔+ℎ) 𝜑) − 𝑎(1) ((𝐮ℓ, 0, 0) , (𝐮0, 𝑔, −ℎ))| .

Then, Lemma 6.3.13 links the last quantity with the jump of 𝐮ℓ:

𝑎(1) ((𝐮ℓ, 0, 0) , (𝐮0, 𝑔, −ℎ)) = ℓ(1) ((𝐮0 + 𝑠𝑔+ℎ) 𝜑) + ⟨[𝐮ℓ], 𝑔 + ℎ⟩Σ,

so that
2𝜋 ‖ℎ‖2𝐿2𝚛(Σ) ≤ |⟨[𝐮ℓ], 𝑔 + ℎ⟩Σ| .

Finally, using Proposition 6.4.9 with Lemma 6.4.12 gives the result.

Remark 6.4.13. Given the solution 𝐮 of (6.58), Lemma 6.4.12 shows in particular that its jump
belongs to 𝐿2𝚛(Σ).
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Simplified variational formulation and numerical ex-
periments
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7.1 Simplified variational formulation

Let Ω = (−𝑎, 𝑎) × (0, 𝐿), with the notations of Chapter 4, and 𝑢+ be the limiting absorption solution
of

|
|
|
|
|
|
|
|

find 𝑢 ∈ 𝐿2(Ω) such that

− div(𝛼∇𝑢) − 𝜔2𝑢 = 𝑓Ω in Ω,

𝛼𝜕𝑛𝑢 + 𝑖𝜆𝑢 = 𝑓Γ on Γ𝑛 ∪ Γ𝑝,

𝑢(𝑥, 0) = 𝑢(𝑥, 𝐿), (𝛼𝜕𝑦)𝑢(𝑥, 0) = (𝛼𝜕𝑦)𝑢(𝑥, 𝐿), 𝑥 ∈ (−𝑎, 𝑎),

where supp 𝑓 ∩ Σ = ∅. In the view of the results from Chapters 5 and 6, 𝑢+ satisfies the decompo-
sition of Assumption 6.1.1, i.e., 𝑢+ = 𝑢+𝑟𝑒𝑔 + 𝑢+𝑠𝑖𝑛𝑔. Moreover, Propositions 5.3.5 and 6.3.5 show that
the regular part has a vanishing jump through the interface, and Lemma 6.24 provides an explicit
formula of the action of this jump as an element of (𝐻 1

𝑝𝑒𝑟(Σ))
′
:

⟨[𝐮], 𝑘⟩(𝐻 1
𝑝𝑒𝑟(Σ,𝚛))

′
,𝐻 1

𝑝𝑒𝑟(Σ,𝚛)
= 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘) + 2𝑖𝜆 ∑

𝑗∈{𝑝,𝑛}
∫
Γ𝑗
𝑢𝑗𝑠𝑘ds − ℓ∞ (𝑠𝑘) . (7.1)

Therefore, this naturally leads to the following problem:

|
find (𝐮, 𝑔) ∈ 𝑄 × 𝐻 1

𝑝𝑒𝑟(Σ) such that, for any (𝐯, 𝑘) ∈ 𝑄 × 𝐻 1
𝑝𝑒𝑟(Σ),

𝑏(1)𝑟𝑒𝑔 (𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝐯) + ⟨[𝐮]Σ, 𝑘⟩Σ = ℓ(1) (𝐯) .
(7.2)
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Refer to (6.4) (respectively (6.5)) for the definition of 𝑏(1)𝑟𝑒𝑔 (resp. 𝑏(1)𝑠𝑖𝑛𝑔). Then, using the expres-
sion (7.1) of the jump, this leads to the following simplified variational formulation:

|
find (𝐮, 𝑔) ∈ 𝑄 × 𝐻 1

𝑝𝑒𝑟(Σ) such that, for any (𝐯, 𝑘) ∈ 𝑄 × 𝐻 1
𝑝𝑒𝑟(Σ),

𝑏(1)𝑟𝑒𝑔 (𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝐯) +
̃
𝑏(1)𝑠𝑖𝑛𝑔 (𝐮, 𝑘) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝑠𝑘) = ℓ(1) (𝐯 + 𝑠𝑘) ,

(7.3)

where we introduced

̃
𝑏(1)𝑠𝑖𝑛𝑔 (𝐮, 𝑘) ≔ 𝑏(1)𝑠𝑖𝑛𝑔 (𝑘, 𝐮) + 2𝑖𝜆 ∑

𝑗∈{𝑝,𝑛}
∫
Γ𝑗
𝑢𝑗𝑠𝑘ds. (7.4)

The mixed variational formulation proposed in Chapter 6 and the above variational formulation
are equivalent in the following sense.

Theorem 7.1.1. Let (𝐮, 𝑔) ∈ 𝑄 × 𝐻 1
𝑝𝑒𝑟(Σ) be such that ((𝐮, 𝑔, 𝑔) , 𝐮𝜑) ∈ 𝑉 (1) × 𝑄 is the solution of the

mixed problem (6.22). Then, (𝐮, 𝑔) is a solution of the problem (7.3).
Reciprocally, let (𝐮, 𝑔) ∈ 𝑄 × 𝐻 1

𝑝𝑒𝑟(Σ) be a solution of the simplified problem (7.3). Then,
((𝐮, 𝑔, 𝑔) , 𝐮𝜑) ∈ 𝑉 (1) × 𝑄 is the solution of the mixed problem (6.22).

Proof. Let ((𝐮, 𝑔, 𝑔) , 𝐮𝜑) ∈ 𝑉 (1) × 𝑄 be a solution to (6.22), and 𝑘 ∈ 𝐻 1
𝑝𝑒𝑟(Σ). Then, according to

proposition 6.4.6, we have

ℓ(1) ((𝟎 + 𝑠0−𝑘) 𝜑) = 𝑎(1) ((𝐮, 𝑔, 𝑔) , (𝟎, 0, 𝑘)) + 𝑏 ((0, 0, 𝑘) , 𝐮𝜑) = ⟨[𝐮]Σ, 𝑘⟩Σ − ℓ(1) (𝑠𝑘𝜑) .

Hence, ⟨[𝐮]Σ, 𝑘⟩Σ = 0 for all 𝑘 ∈ 𝐻 1
𝑝𝑒𝑟(Σ) and (𝐮, 𝑔) is a solution of (7.3).

Reciprocally, let (𝐮, 𝑔) ∈ 𝑄 × 𝐻 1
𝑝𝑒𝑟(𝑄) be a solution to (7.3). Considering 𝑘 = 0, we have for all

𝐯 ∈ 𝑄
𝑏(1)𝑟𝑒𝑔 (𝐮, 𝐯) + 𝑏(1)𝑠𝑖𝑛𝑔 (𝑔, 𝐯) = ℓ(1) (𝐯) .

Then, one can apply Proposition 6.4.6,

𝑎(1) ((𝐮, 𝑔, 𝑔) , (𝐯, 𝑘, 𝑙)) + 𝑏(1) ((𝐯, 𝑘, 𝑙) , 𝐮𝜑) = ℓ(1) ((𝐯 + 𝑠𝑘−𝑙) 𝜑) + ⟨[𝐮]Σ, 𝑘 − 𝑙⟩Σ, ∀ (𝐯, 𝑘, 𝑙) ∈ 𝑉 (1).
(7.5)

On the other hand, taking 𝐯 = 0 in (7.3) proves that [𝐮]Σ = 0. Finally, plugging it in (7.5) ends the
proof.

The last theorem, complemented by Theorem 6.4.5, has the following corollary.

Corollary 7.1.2. The solution to (7.3), if it exists, is unique.

We discretize the two problems (7.2) and (7.3) in Section 7.3. However, at this point no proof
of the well-posedness are available.

7.2 Numerical experiments for the mixed variational formula-
tions

The numerical experiments consist in checking the convergence rate of the quantity of interest,
namely the regular part 𝐮 ∈ 𝑄, the amplitude of the singular part 𝑔 ∈ 𝐻 1

𝑝𝑒𝑟(Σ) or the jump of the
regular part [𝐮]Σ, for several test cases. We set Ω = (−1, 1)2. Simple test cases can be computed
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7.2. Numerical experiments for the mixed variational formulations

Figure 7.1: Real part (left) and imaginary part (right) of 𝑢(𝑥, 𝑦) = −𝑒𝑖𝜋𝑦𝐾0(𝜋𝑥). One may observe
that all level set lines start and finish on the interface at 𝑥 = 0, because of the presence of the
logarithmic plus jump singularity.

Figure 7.2: Real part (left) and imaginary part (right) of the regular part of 𝑢(𝑥, 𝑦) = −𝑒𝑖𝜋𝑦𝐾0(𝜋𝑥).
One may observe that all level set lines are continuous through the interface at 𝑥 = 0, which
indicates that it obviously has a vanishing jump.

from Chapter 5, with 𝛼(𝑥, 𝑦) = 𝑥. In that case, 𝜓𝑘(𝑦) = 𝑒𝑖𝜋𝑦, 𝜆𝑘 = 𝑘𝜋. Then, typical solutions, for
𝑘 ≥ 1, read:

𝑢+ 𝑔 𝑢+𝑟𝑒𝑔

1 0 1

𝚂(𝑥) 1 0

𝑒𝑖𝑘𝜋𝑦𝐼0(𝑘𝜋𝑥) 0 𝑒𝑖𝑘𝜋𝑦𝐼0(𝑘𝜋𝑥)

−𝑒𝑖𝑘𝜋𝑦𝐾0(𝑘𝜋𝑥) 𝑒𝑖𝑘𝜋𝑦 𝑒𝑖𝑘𝜋𝑦 (−𝐾0(𝑘𝜋𝑥) − 𝚂(𝑥))

(7.6)

Notice that these solutions solve div(𝑥∇𝑢) = 0 in Ω. We may also use the solutions above with
𝜔 ≠ 0, by computing the associated source term 𝑓Ω.

We first provide a few additional comments on the discretization proposed in [49]. Then, we
discretize the method proposed in Chapter 6. Finally, we experiment the discretization of the
simplified problem (7.3).
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7.2.1 Mixed variational formulation in 𝐻 2
𝑝𝑒𝑟(Σ)

Recall the conforming discretization of (4.17), 𝑉 (2)
ℎ1,ℎ2 = 𝑄ℎ1 × 𝐻

2
ℎ2 × 𝐻

2
ℎ2 , with

𝑄ℎ1 = {𝑣ℎ1 ∈ 𝑄 ∶ 𝑣ℎ1 |𝐾 ∈ 𝑃1(𝐾), for all 𝐾 ∈ 𝒯 Ω
ℎ1 },

𝐻 2
ℎ2 = {𝑝ℎ2 ∈ 𝐻 2

𝑝𝑒𝑟(Σ) ∶ 𝑝ℎ2 |𝐾 ∈ 𝐻𝑚(𝐾), for all 𝐾 ∈ 𝒯 Σ
ℎ2},

see Section 4.2.2 for more details. Recall that the approximation of the solutions 𝑢+ = 1 and
𝑢+ = 𝚂(𝑥) does not converge. The situation is slightly different for the singular solution 𝑢 =
−𝑒𝑖𝜋𝑦𝐾0(𝜋𝑥), where one observes a monotonic decrease of the relative error in 𝐿2(Σ)-norm for the
singular coefficient 𝑔, see Figure 7.3a. However, convergence for the regular part is not obvious in
‖⋅‖𝑄 norm and 𝐿2(Ω)-norm, see again figure 7.3a. In Figure 7.3b, we provide error curves depending
on the choice of the parameters 𝜌2 = 𝜇2. As expected, the convergence stagnates for larger values
of 𝜌2, and we also see that decreasing 𝜌2 from 10−5 to 10−6 has no visible effect on the error
curves.
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(a) 𝜌2 = 𝜇2 = 10−5.
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(b) Relative 𝐿2 errors on the regular part with
different stabilization parameters 𝜌2 = 𝜇2.

Figure 7.3: Relative errors for 𝑢 = −𝐾0(𝜋𝑥)𝑒𝑖𝜋𝑦.

7.2.2 Mixed variational formulation in 𝐻 1
𝑝𝑒𝑟(Σ)

Below, we study the numerical approximation of (6.22), or of its stabilized version (6.56). In order to
test the accuracy of the method described in Chapter 6, we reproduce the experiments conducted
in section 4.2.2, replacing the discrete space 𝑉 (2)

ℎ,ℎ with the discrete space 𝑉 (1)
ℎ = 𝑄ℎ × 𝐻 1

ℎ × 𝐻 1
ℎ ,

𝑄ℎ = {𝑣ℎ ∈ 𝑄 ∶ 𝑣ℎ|𝐾 ∈ 𝑃1(𝐾), for all 𝐾 ∈ 𝒯 Ω
ℎ } ,

𝐻 1
ℎ = {𝑔ℎ ∈ 𝐻 1

𝑝𝑒𝑟(Σ) ∶ 𝑔ℎ|𝐾 ∈ 𝑃1(𝐾), for all 𝐾 ∈ 𝒯 Σ
ℎ } .

Above, 𝒯 Ω
ℎ is a triangulation of Ω that is conforming with respect to the interface Σ, and 𝒯 Σ

ℎ
is a triangulation of Σ, both with meshsize ℎ, however we do not impose that 𝒯 Σ

ℎ is the trace
of 𝒯 Ω

ℎ on Σ. Different triangulations 𝒯 Ω
ℎ are used, which are all symmetric with respect to the

interface Σ, and we choose uniform triangulations 𝒯 Σ
ℎ . Like in section 4.2.2, elements of 𝑄ℎ have

no matching condition at the interface. The relative errors 𝑒𝐿2 and 𝑒𝑄 are the same as those defined
in section 4.2.2.
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The code is written in FreeFem++ [32]. Whereas 2D HCT finite elements were used to
discretize the singular part 𝑔ℎ in [49], we now use 𝑃1 Lagrange finite elements on the interface Σ.
1

We consider the same setting as in section 4.2.2, where 𝛼(𝑥, 𝑦) = 𝑥 and 𝜔 = 0, with a purely
regular solution 𝑢+(𝑥, 𝑦) = 1, and with a singular solution 𝑢+(𝑥, 𝑦) = −𝐾0(𝜋𝑥)𝑒𝑖𝜋𝑦 where the
singular coefficient is equal to 𝑔(𝑦) = 𝑒𝑖𝜋𝑦.

The cutoff function we use is the 𝒞 1(Ω) function 𝜑(𝑥, 𝑦) = 1
2 (1 + cos(2𝜋𝑥)) 𝟙|𝑥 |<0.5. Notice

that 𝜑 is prescribed equal to 1 only on the interface in the experiments (compare with definition
4.2.2). The approach in section 6.2 and its theoretical justification in section 6.4 remain valid also
for this choice of 𝜑. It has been also checked numerically that the results presented below do not
depend on the choice of 𝜑 provided that 𝜑 ∈ 𝒞 1(Ω), 𝜕𝑦𝜑 = 0, 𝜑|Σ = 1 and is compactly supported
in 𝑥 ∈ (−𝑎, 𝑎).

Influence of the triangulation. The design of 𝒯 Ω
ℎ has a noticeable influence on the numerical

stability of the method. In particular, we observe that the method is unstable with an unstructured
triangulation 𝒯 Ω,𝑢𝑛𝑠𝑡𝑟

ℎ , see Figure 7.4c. This instability occurs even though 𝒯 Ω,𝑢𝑛𝑠𝑡𝑟
ℎ is symmetric.

On the same figure, we see that one can stabilize the method by using a structured triangulation
𝒯 Ω,𝑠𝑡𝑟
ℎ , as long as structuring occurs on the geometrical support of 𝜑 (see Figure 7.4a).

Numerical convergence and stabilization parameter. We observe on Figure 7.5 that the
method using 𝐻 1

ℎ performs significantly better than the one using 𝐻 2
ℎ2 , compare with Figure 7.3.

Let us remark that, as before, when computing 𝑒𝐿2(𝐮) and 𝑒𝑄(𝐮), we exclude cells that are adjacent
to the interface.

In Figure 7.5a, we notice that the errors increase when decreasing ℎ: this is likely due to
the fact that already at the most coarse discretization the machine precision had been reached,
and for finer discretizations we can observe the effects of the round-off errors in cells close to
the interface. On the other hand, in Figure 7.5b, we observe that the approximation converges
numerically towards the solution 𝑢 = −𝑒𝑖𝜋𝑦𝐾0(𝜋𝑥) with decent rates with respect to the meshsize.

We observe on Figure 7.6 that the relative error on 𝐮𝜌1,ℎ decreases proportionally to the
stabilization parameter 𝜌1. Moreover, one can still compute the discrete solution for 𝜌1 = 0, and
it gives the same results as those obtained for 𝜌1 = 10−6. The latter is due to the fact that, for
the chosen mesh sizes, the error due to stabilization is negligible for “small” values of 𝜌1. On the
other hand, we observe that one can compute solutions in absence of stabilization. This is because
the non-stabilized problem (6.22) is injective, see proposition 6.4.2, and so is its conforming
discretization and hence the discrete solution exists.

Experiments with more complicated version of 𝛼. Now, we take the same geometry, with
𝛼(𝑥, 𝑦) = 𝑥(1 + 1

2 cos(𝜋𝑦)) +
𝑥2
2 cos(𝜋𝑦), 𝜔 = 0 and data 𝑓Γ = 𝑖𝟙Γ𝑝 − 𝑖𝟙Γ𝑛 . Remark that 𝛼 depends

on 𝑦 non-trivially, and thus the exact solution is not known. According to section 6.3.2, given the
limiting absorption solution (𝐮, 𝑔), which has a vanishing jump according to proposition 6.3.5,
(𝐮, 𝑔, 𝑔, 𝐮𝜑) is equal to the solution (𝐮, 𝑔, ℎ, 𝝀) of (6.22). Therefore, we expect that 𝐮ℎ𝜑−𝝀ℎ, 𝑔ℎ−ℎℎ

1To our knowledge, in FreeFem++, it is not possible to combine 1D and 2D discretizations. So, in practice, to
represent elements of 𝐻 1

ℎ , we use 𝑃1 Lagrange finite elements on a single elongated cell in the 𝑥-direction, and as many
cells in the 𝑦-direction as there are in 𝒯 Σ

ℎ , with periodic conditions in 𝑥.
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and finally [𝐮ℎ]Σ go to zero in the appropriate norms ‖⋅‖• when the triangulations 𝒯 Σ
ℎ and 𝒯 Ω,𝑠𝑡𝑟

ℎ
are refined. We will refer to the norms of these quantities as indicators. First, we observe that
value of each norm ‖𝝀ℎ‖𝑄, ‖𝑔ℎ‖𝐻 1(Σ) and ‖ℎℎ‖𝐻 1(Σ), stabilizes quickly with respect to the mesh size
ℎ. Hence, in Figure 7.7, we can report relative errors defined by

𝑑•(𝐮𝜑, 𝛌) =
‖𝐮ℎ𝜑 − 𝝀ℎ‖•

‖ 𝜆ℎ‖•
,  or 𝑑•(𝑔, ℎ) =

‖𝑔ℎ − ℎℎ‖•
‖ 𝑔ℎ‖•

.

In figures 7.7a, we see that the first two indicators converge nicely to 0. Regarding the last
indicator (the norm of the jump [𝐮]Σ), we observe in Figure 7.7b that it converges in 𝐿2(Σ)-norm
very slowly. This indicates that the jump must be handled carefully with this discretization.

7.3 Numerical experiments for the simplified variational formu-
lations

We are now interested in the discretization of the problems form (7.2), (7.3). The discrete space
is 𝑄ℎ × 𝐻 1

ℎ where 𝑄ℎ and 𝐻 1
ℎ are defined in the Section 7.2.2. As before, the triangulations 𝒯 Ω

ℎ
is conforming with respect to the interface Σ. Moreover, we impose that 𝒯 Σ

ℎ is the trace of
the triangulation 𝒯 Ω

ℎ , and 𝒯 Ω
ℎ is symmetric with respect to Σ. We do not impose continuity

conditions at the interface between 𝑢𝑝,ℎ and 𝑢𝑛,ℎ. Notice that we do not take into accounts the
cells which touch the interface when we measure the volume errors.

Since the well-posedness of the continuous counterparts of the numerical experiments is not
proved, we focus on few cases. In particular, we take 𝛼(𝑥, 𝑦) = 𝑥. Two functions are approximated,
as 𝑢(𝑥, 𝑦) = −𝑒𝑖𝜋𝑦𝐾0(𝜋𝑥) and 𝑢(𝑥, 𝑦) = 𝑒𝑖𝜋𝑦(1 − 𝑥2). The former is singular, and the latter is
regular. Finally, several values of 𝜔 are taken.

We first discretize the sesquilinear form (7.3). Then, we discretize the same problem, but with
the jump handled numerically, i.e., the problem (7.2).

7.3.1 First simplified variational formulation

The first experiment consists in discretizing directly the problem (7.3). This leads to linear system
𝑩𝑈ℎ,ℎ = 𝐿 where:

𝘽 =
⎛
⎜
⎜
⎝

𝘽𝑝 0 𝘽Σ𝑔,𝑝
0 𝘽𝑛 𝘽Σ𝑔,𝑛

𝘽𝑝,Σ𝑔 𝘽𝑛,Σ𝑔 𝘽Σ𝑔

⎞
⎟
⎟
⎠

, 𝑈ℎ,ℎ =
⎛
⎜
⎜
⎝

𝑈𝑝,ℎ
𝑈𝑛,ℎ
𝐺ℎ

⎞
⎟
⎟
⎠

, 𝐿 =
⎛
⎜
⎜
⎝

𝐿𝑝
𝐿𝑛
𝐿Σ𝑔

⎞
⎟
⎟
⎠

.

Once again, the mesh has a great influence on the convergence : we observe that the discretiza-
tions do not converge with unstructured symmetric meshes, whereas they do with symmetric
structured meshes, see Figure 7.8. Then, the relative errors with a structured mesh decrease with
the same rate as in previous part, see Figure 7.9. Moreover, the jump converges toward zero in
spite of the absence of explicit constraint during the discretization process.
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7.3.2 Second simplified variational formulation

The second discretization consists in discretizing the problem (7.2) without expanding the defini-
tion of the jump. This now leads to a linear system 𝑩𝑈ℎ,ℎ = 𝐿 where:

𝘽 =
⎛
⎜
⎜
⎝

𝘽𝑝 0 𝘽Σ𝑔,𝑝
0 𝘽𝑛 𝘽Σ𝑔,𝑛

𝞬𝑝,Σ −𝞬𝑛,Σ 0

⎞
⎟
⎟
⎠

, 𝑈ℎ,ℎ =
⎛
⎜
⎜
⎝

𝑈𝑝,ℎ
𝑈𝑛,ℎ
𝐺ℎ

⎞
⎟
⎟
⎠

, 𝐿 =
⎛
⎜
⎜
⎝

𝐿𝑝
𝐿𝑛
0

⎞
⎟
⎟
⎠

.

This method ensures a zero jump of the regular part with a magnitude to the machine precision
by the discretization of the following sesquilinear form:

∫
Σ
(𝛾𝑝,Σ𝑢𝑝 − 𝛾𝑛,Σ𝑢𝑛) 𝑘ds, with (𝑢𝑝, 𝑢𝑛) ∈ 𝑄, 𝑘 ∈ 𝐻 1

𝑝𝑒𝑟(Σ).

It is possible since we use 𝐻 1(Ω𝑝) × 𝐻 1(Ω𝑛) conforming finite elements. Then, one may observe
in Figure 7.10 the convergence of the numerical solutions, for both the structured mesh 𝒯 Ω,𝑠𝑡𝑟

ℎ
and the unstructured mesh 𝒯 Ω,𝑢𝑛𝑠𝑡𝑟

ℎ . However, the convergence rates are clearly deteriorated
in the case of the unstructured mesh. Finally, we compare in Figure 7.11 the approximations of
𝑢(𝑥, 𝑦) = −𝑒𝑖𝜋𝑦𝐾0(𝜋𝑥), which has a singular part (7.6), and 𝑢(𝑥, 𝑦) = (1 − 𝑥2)𝑒𝑖𝜋𝑦. We observe that
taking 𝜔 ≠ 0 seems to have a negligible influence on the convergence. Moreover, we also see that
the absence of a singular part in the solution seems to improve the convergence.

7.4 Conclusions

From the standpoint of Chapter 6, we proposed in this chapter a new variational formulation (7.3)
to solve the degenerate PDE introduced in Chapter 4. Numerical experiments have been conducted
on the variational formulations proposed in this thesis. The first observation, compared to the
existing literature, is that the discretization spaces 𝑄ℎ and 𝐻 1

ℎ seem to be well-fitted to the problem.
Then, the second observation is that the choice of meshes has an important influence on the
convergence of the approximations : the main two issues are whether they are structured or
not, and matching at the interface. The mixed variational formulation studied in Chapter 6
requires structured meshes on the support of a cutoff function 𝜑. On the other hand, the matching
condition of the meshes at the interface has an influence on how the vanishing jump condition is
taken into account for the second simplified formulation (7.2). Importantly, taking into account
the jump condition as in §7.3.2 gives the best results, and moreover, the approximation even with
unstructured meshes converges numerically. Finally, the computations are faster for the second
simplified formulation, compared to the other ones.

We thank Anouk Nicolopoulos for providing the code she initially developed in her PhD
thesis [50], which was a great help for the numerical experiments.
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Figure 7.4: Influence of structuring 𝒯 Ω
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Figure 7.10: Relative errors for the formulation with a discretized jump with 𝑢 = −𝑒𝑖𝜋𝑦𝐾0(𝜋𝑥) and
𝜔 = 0.
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Conclusions

In this work, we have conducted the analysis of two Maxwell’s problems with sign-changing
coefficients. Both these problems catch specific difficulties of the model of cold plasma from
which they have been derived.

The first part I of this work proposes a mathematical analysis of electromagnetic wave
propagation in a hyperbolic metamaterial. We proved the existence of smooth solution via the
exhibition of a Newton potential. Moreover, radiation conditions in the spirit of Silver-Müller
radiation conditions were established, which guarantee the uniqueness of the solution.

In the second part II, a degenerate PDE has been studied in detail. In particular, a limiting
absorption principle theorem has been established in Chapter 5. More importantly, the ansatz of
the singular part of the solution proposed in dimension 1 in [35], has been thoroughly refined in
the case of a 2D interface and a source term away from this interface. This allowed to enhance
in Chapter 6 the results obtained in [49]. In particular, we proved that the proposed method is
consistent with the limiting absorption principle. Moreover, we proved in Chapter 5 and 6, using
different techniques, that the regular part of the limiting absorption solution has a vanishing
jump through the interface. This has naturally led in Chapter 7 to consider simple but efficient
discrete problems and their continuous counterparts.

Perspectives

The first part of the thesis can obviously be considered as a preliminary work. The continuation of
this work could consist in investigating the well-posedness of the problem expressed as boundary
integral equation. In that case, the very first question to address is on which kind of domain this
problem is well-posed. Can the domain be bounded or semi-bounded ? Are there constraints on
the shape or the regularity of the boundary ? For the time being, these are open questions, but
we refer to [29, 28] for interesting works in this direction.

The second part of the thesis is ended by two short-term prospects. On one hand, the
Assumption 5.5.1 may lead to another interesting framework in which the variational formulation
should be considered. On the other hand, the work done has shown the relevance of the simplified
variational formulation 7.3, which justifies its further numerical analysis. Aside from this, only
a scalar function 𝛼 has been studied in detail. Therefore, it should be possible to replace it by a
tensor of the form � = 𝛼ℍ, withℍ an elliptic hermitian matrix. Finally, another prospective is the



model described in Section 2.4.2 for which an even more general form of the tensor � is suggested.
Of course, all these questions are open for the full 3D Maxwell system, whose mathematical and
numerical analysis is the ultimate goal of this research.
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Résumé : De nos jours, les plasmas sont principale-
ment utilisés à des fins industrielles. L’un des exemples
les plus fréquemment cités d’utilisation industrielle est
la production d’énergie électrique via des réacteurs nu-
cléaires à fusion. Pour contenir le plasma correctement
à l’intérieur du réacteur, un champ magnétique est im-
posé en arrière-plan, et la densité et la température du
plasma doivent être précisément contrôlées. Cela est ef-
fectué en envoyant des ondes électromagnétiques à des
fréquences et dans des directions spécifiques en fonc-
tion des caractéristiques du plasma.
La première partie de cette thèse de doctorat est consa-
crée à l’étude du modèle du plasma avec un fort champ
magnétique en arrière-plan, ce qui correspond à un mé-
tamatériau hyperbolique. L’objectif est d’étendre les
résultats existant en 2D au cas 3D et de dériver une
condition de radiation. Nous introduisons une sépa-
ration des champs électriques et magnétiques ressem-
blant à la décomposition TE et TM habituelle, puis

nous présentons quelques résultats sur les deux pro-
blèmes résultants. Les résultats sont dans un état très
partiel et constituent un brouillon approximatif sur le
sujet.
La deuxième partie étudie l’EDP dégénérée associée
aux ondes résonantes « lower-hybrid » dans le plasma.
Le problème aux limites associé est bien posé dans un
cadre variationnel « naturel ». Cependant, ce cadre
n’inclut pas le comportement singulier présenté par les
solutions physiques obtenues via le principe d’absorp-
tion limite. Ce comportement singulier est important
du point de vue physique car il induit le chauffage du
plasma mentionné précédemment. Un des résultats clés
de cette deuxième partie est la définition d’une notion
de saut à travers l’interface à l’intérieur du domaine, ce
qui permet de caractériser la décomposition de la so-
lution d’absorption limite en parties régulières et sin-
gulières.
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Abstract : Nowadays, plasmas are mainly used for
industrial purpose. One of the most frequently cited
example of industrial use is electric energy production
via fusion nuclear reactors. Then, in order to contain
plasma properly inside the reactor, a background ma-
gnetic field is imposed, and the density and tempera-
ture of the plasma must be precisely controlled. This
is done by sending electromagnetic waves at specific
frequencies and directions depending on the characte-
ristics of the plasma.
The first part of this PhD thesis consists in the study of
the model of plasma in a strong background magnetic
field, which corresponds to a hyperbolic metamaterial.
The objective is to extend the existing results in 2D to
the 3D-case and to derive a radiation condition. We in-
troduces a splitting of the electric and magnetic fields
resembling the usual TE and TM decomposition, then,

it gives some results on the two resulting problems.
The results are in a very partial state, and constitute
a rough draft on the subject.
The second part consists in the study of the degenerate
PDE associated to the lower-hybrid resonant waves
in plasma. The associated boundary-value problem is
well-posed within a “natural” variational framework.
However, this framework does not include the singular
behavior presented by the physical solutions obtained
via the limiting absorption principle. Notice that this
singular behavior is important from the physical point
of view since it induces the plasma heating mentioned
before. One of the key results of this second part is the
definition of a notion of weak jump through the inter-
face inside the domain, which allows to characterize
the decomposition of the limiting absorption solution
into a regular and a singular parts.
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